Linux -- 使用多张gpu卡进行深度学习任务(以tensorflow为例)
在linux系统上进行多gpu卡的深度学习任务
- 确保已安装最新的 TensorFlow GPU 版本。
import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
- 1、确保你已经正确安装了tensorflow和相关的GPU驱动,这里可以通过在命令行输入
nvidia-smi
来查看:
如果成功显示了类似上述的GPU信息和驱动版本信息,则说明NVIDIA驱动已经正确安装。
2、导入必要的库,设置可见的gpu设备列表:
import tensorflow as tf
# 设置可见的GPU设备列表(例如,使用GPU 0、1、2和3)
gpu_devices = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_visible_devices(gpu_devices, 'GPU')
- 3、创建一个
MirroredStrategy
对象,该对象将自动复制模型和数据到每个可见的GPU卡上:
strategy = tf.distribute.MirroredStrategy()
- 4、在
strategy
范围内创建和训练模型:
with strategy.scope():# 创建和编译模型model = create_model()model.compile(...)# 加载数据train_dataset = load_train_data()test_dataset = load_test_data()# 训练模型model.fit(train_dataset, validation_data=test_dataset, ...)
以上,在MirroredStrategy范围内创建的模型将自动复制并分布到每个可见的GPU卡上,每个卡都将处理一部分数据。
使用多个 GPU 的最佳做法是使用 tf.distribute.Strategy
以下给出一个官网的简单示例:
tf.debugging.set_log_device_placement(True)
gpus = tf.config.list_logical_devices('GPU')
strategy = tf.distribute.MirroredStrategy(gpus)
with strategy.scope():inputs = tf.keras.layers.Input(shape=(1,))predictions = tf.keras.layers.Dense(1)(inputs)model = tf.keras.models.Model(inputs=inputs, outputs=predictions)model.compile(loss='mse',optimizer=tf.keras.optimizers.SGD(learning_rate=0.2))
当然,也有手动的放置方法:
tf.debugging.set_log_device_placement(True)gpus = tf.config.list_logical_devices('GPU')
if gpus:# Replicate your computation on multiple GPUsc = []for gpu in gpus:with tf.device(gpu.name):a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])c.append(tf.matmul(a, b))with tf.device('/CPU:0'):matmul_sum = tf.add_n(c)print(matmul_sum)
在tensorflow上使用gpu:https://www.tensorflow.org/guide/gpu?hl=zh-cn
相关文章:

Linux -- 使用多张gpu卡进行深度学习任务(以tensorflow为例)
在linux系统上进行多gpu卡的深度学习任务 确保已安装最新的 TensorFlow GPU 版本。 import tensorflow as tf print("Num GPUs Available: ", len(tf.config.list_physical_devices(GPU)))1、确保你已经正确安装了tensorflow和相关的GPU驱动,这里可以通…...

Mendix中的依赖管理:npm和Maven的应用
序言 在传统java开发项目中,我们可以利用maven来管理jar包依赖,但在mendix项目开发Custom Java Action时,由于目录结构有一些差异,我们需要自行配置。同样的,在mendix项目开发Custom JavaScript Action时,…...
自定义hooks之useLastState、useSafeState
自定义hooks之useLastState、useSafeState useLastState 在某些情况下,可能需要知道状态的历史值,例如,希望在状态变化时执行某些操作,但又需要访问上一个状态的值,以便进行比较或其他操作。自定义 React Hook 可以帮…...
前端判断: []+[], []+{}, {}+[], {}+{}
本质: 二元操作符规则 一般判断规则: 如果操作数是对象,则对象会转换为原始值如果其中一个操作数是字符串的话,另一个操作数也会转换成字符串,进行字符串拼接否则,两个操作数都将转换成数字或NaN,进行加法操作 转为原始数据类型的值的方法: Symbol.ToPrimitiveObject.protot…...
el-input-number/el-input 实现实时输入数字转换千分位(失焦时展示千分位)
el-input-number/el-input 实现实时输入数字转换千分位(失焦时展示千分位) 我把封装指令的代码放在了main.js,代码如下 // 金额展示千分位 Vue.directive("thousands", {inserted: function(el, binding) {// debugger// 获取input节点if (el.tagName.toLocaleUppe…...

一篇博客学会系列(2)—— C语言中的自定义类型 :结构体、位段、枚举、联合体
目录 前言 1、结构体 1.1、结构体类型的声明 1.2、特殊的结构体类型声明 1.3、结构体的自引用 1.4、结构体的定义和初始化 1.5、结构体成员变量的调用 1.6、结构体内存对齐 1.6.1、offsetof 1.6.2、结构体大小的计算 1.6.3、为什么存在内存对齐? 1.7、…...

KongA 任意用户登录漏洞分析
KongA 简介 KongA 介绍 KongA 是 Kong 的一个 GUI 工具。GitHub 地址是 https://github.com/pantsel/konga 。 KongA 概述 KongA 带来的一个最大的便利就是可以很好地通过UI观察到现在 Kong 的所有的配置,并且可以对于管理 Kong 节点 漏洞成因 未设置TOKEN_SECRE…...

吉力宝:智能科技鞋品牌步力宝引领传统产业创新思维
在现代经济环境下,市场经济下产品的竞争非常的激烈,如果没有营销,产品很可能不被大众认可,酒香也怕巷子深,许多传统产业不得不面临前所未有的挑战。而为了冲出这个“巷子”,许多企业需要采用创新思维&#…...
【IPC 通信】信号处理接口 Signal API(1)
收发信号思想是 Linux 程序设计特性之一,一个信号可以认为是一种软中断,通过用来向进程通知异步事件。 本文讲述的 信号处理内容源自 Linux man。本文主要对各 API 进行详细介绍,从而更好的理解信号编程。 信号概述 遵循 POSIX.1,…...

使用GDIView排查GDI对象泄漏导致的程序UI界面绘制异常问题
目录 1、问题说明 2、初步分析 3、查看任务管理器,并使用GDIView工具分析 4、GDIView可能对Win10兼容性不好,显示的GDI对象个数不太准确 5、采用历史版本比对法,确定初次出现问题的时间点,并查看前一天的代码修改记录 6、将…...
蓝桥等考Python组别一级001
第一部分:选择题 1、Python L1 (15分) 下面哪个不是Python的编程环境?( ) Python在线编程IDLEPyCharmScratch正确答案:D 2、Python L1(15分) 世界上第一台通用电子计算机ENIAC是在( )诞生的。 美国英国日本德国正确答案:A 3、Python L1(20分) 关于P…...

Unity之Hololens2开发 如何接入的MRTK OpenXR Plugin
一.前言 什么是Hololens? Hololens是由微软开发的一款混合现实头戴式设备,它将虚拟内容与现实世界相结合,为用户提供了沉浸式的AR体验。Hololens通过内置的传感器和摄像头,能够感知用户的环境,并在用户的视野中显示虚拟对象。这使得用户可以与虚拟内容进行互动,将数字信…...

Ubuntu系统Linux内核安装和使用
安装: 检查树莓派Linux版本,我的是6.1 uname -r 内核下载链接: Raspberry Pi GitHub 找对应版本下载 导入之后,解压安装即可 unzip linux-rpi-6.1.y.zip 其他内容 treee 指令安装 sudo apt-get install tree 使用这…...
数学术语之源——群同态的“核(kernel)”
1. “kernel”这个术语在群论中的起源 Ivar Fredholm 在 1903 年的第27期Acta Math 数学学报发表的一篇关于“积分方程(INTEGRAL EQUATIONS)”的著名论文(“关于一类函数方程(Sur une classe des quations fonctionnelles)”)中使用了法语“noyau(核)”(365-390页)。 David …...

defcon-quals 2023 crackme.tscript.dso wp
将dso文件放到data/ExampleModule目录下,编辑ExampleModule.tscript文件 function ExampleModule::onCreate(%this) { trace(true); exec("./crackme"); __main("aaaaaaaa"); quit(); } 然后点击主目录下的Torque3D-debug.bat就可以在生成的c…...

前端开发 vs. 后端开发:编程之路的选择
文章目录 前端开发:用户界面的创造者1. HTML/CSS/JavaScript:2. 用户体验设计:3. 响应式设计:4. 前端框架: 后端开发:数据和逻辑的构建者1. 服务器端编程:2. 数据库:3. 安全性&#…...
算法练习4——删除有序数组中的重复项 II
LeetCode 80 删除有序数组中的重复项 II 给你一个有序数组 nums ,请你 原地 删除重复出现的元素,使得出现次数超过两次的元素只出现两次 ,返回删除后数组的新长度。 不要使用额外的数组空间,你必须在 原地 修改输入数组 并在使用 …...

【C++进阶(六)】STL大法--栈和队列深度剖析优先级队列适配器原理
💓博主CSDN主页:杭电码农-NEO💓 ⏩专栏分类:C从入门到精通⏪ 🚚代码仓库:NEO的学习日记🚚 🌹关注我🫵带你学习C 🔝🔝 栈和队列 1. 前言2. 栈和队列的接口函数熟悉3. …...

linux opensuse使用mtk烧录工具flashtool
环境 linux发行版:opensuse leap 15.5 工具:SP_Flash_Tool_Selector_exe_Linux_v1.2316.00.100.rar 或其他版本 目标:mtk设备 下载链接 https://download.csdn.net/download/zmlovelx/88382784 或网络搜索。 使用 opensuse可直接解压后使…...

Visio如何对文本打下标、上标,以及插入公式编辑器等问题(已解决)
解决这个问题的本质问题,就是在Visio中插入公式编辑器(这不是visio的常用命令,需要添加)。 打开Visio--》文件--选项 点击选项,弹出对话框。在自定义功能区中,点击 常用命令,在下拉选项中&#…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...

shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...