当前位置: 首页 > news >正文

《YOLOv5:从入门到实战》报错解决 专栏答疑

前言:Hello大家好,我是小哥谈。《YOLOv5:从入门到实战》专栏上线后,部分同学在学习过程中提出了一些问题,笔者相信这些问题其他同学也有可能遇到。为了让大家可以更好地学习本专栏内容,笔者特意推出了该篇专栏答疑,针对同学们在学习过程中所提出的问题进行汇总记录,并不断实时更新,希望能够帮助到大家!🌈 

本专栏涵盖了丰富的YOLOv5算法从入门到实战系列教程,专为学习YOLOv5的同学而设计,堪称全网最详细的教程!该专栏从YOLOv5基础知识入门到项目应用实战都提供了详细的手把手教程,欢迎大家订阅并一并探索!

       目录

🚀1.报错解决

🚀2.专栏答疑

🚀1.报错解决

💥💥报错1

报错内容:

报错内容如下图所示:

解决方案:

train.py文件中,大概324行左右,修改下列代码:

# Backward
scaler.scale(loss).backward()

在原代码的基础上添加一行代码:

# Backward
torch.use_deterministic_algorithms(False) # 添加代码
scaler.scale(loss).backward()

💥💥报错2

报错内容:

FileNotFoundError: [Errno 2] No such file or directory: 'yolov5s.pt'

报错内容如下图所示:

解决方案:

该报错容易发生在新入门的学生中,报错原因是没有准备预训练权重文件。

预训练权重:一般为了缩短网络的训练时间,并达到更好的精度,我们一般加载预训练权重进行网络的训练。而YOLOv5的5.0版本给我们提供了几个预训练权重,我们可以对应我们不同的需求选择不同的版本的预训练权重。通过如下的图可以获得权重的名字和大小信息,可以预料的到,预训练权重越大,训练出来的精度就会相对来说越高,但是其检测的速度就会越慢。预训练权重可以通过下列网址进入然后进行下载,本次训练自己的数据集用的预训练权重为yolov5s.pt

说明:♨️♨️♨️

预训练权重网址:Release v5.0 - YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations · ultralytics/yolov5 · GitHub

💥💥报错3

报错内容:

export GIT_PYTHON_REFRESH=quiet

报错内容如下图所示:

解决方案:

train.py文件开头,添加下列代码:

os.environ["GIT_PYTHON_REFRESH"] = "quiet"

具体如图所示:

💥💥报错4

报错内容:

OSError: [WinError 1455] 页面文件太小,无法完成操作。 Error loading "C:\Users\Lenovo\your_path\pytorch\lib\site-packages\torch\lib\cudnn_cnn_infer64_8.dll" or one of its dependencies.

报错内容如下图所示:

解决方案:

train.py文件中找到parse_opt函数,调小‘--workers’中的default的值来解决。


🚀2.专栏答疑

💥💥问题1

问题内容:

可以把backbone替换成MobileNetv3以后,再更换成BiFPN的结构吗?

笔者回复:

可以的,我看论文有这么做的,您可以试一下效果。

💥💥问题2

问题内容:

添加了注意力机制后,为什么反而降点了呢?

笔者回复:

添加注意力不起作用无外乎两个原因,一是代码错误,二是注意力不适合。代码错误就不说了,而注意力不适合,需要明白:

注意力本身就是一种特征,通过附加到源特征上,实现一种类似特征增强的效果,因此从原理上讲,添加注意力,即使结果不变好,也不见得变差,但实际却经常遇到结果变差的情况。换一种说法,注意力是一组权重,权重附加到特征上,有增强的也有不增强的,当大量权重附加都达到增强效果,而只有少量特征造成负面影响,注意力就整体上增强了。这也是我们常说的注意力强化有用特征而弱化无用特征的作用,但其实鬼知道它强化的是什么特征,它也不可能强化的都是有用特征。注意力不起作用或者起反作用还与添加位置或者数据集等有关系。

所以,总结就是,对于YOLOv5算法,没有绝对涨点的改进操作,添加注意力机制也是如此,所以添加是否有用,需要多加尝试!


说明:♨️♨️♨️

本篇内容笔者会根据情况实时更新,大家有任何问题欢迎指出!

相关文章:

《YOLOv5:从入门到实战》报错解决 专栏答疑

前言:Hello大家好,我是小哥谈。《YOLOv5:从入门到实战》专栏上线后,部分同学在学习过程中提出了一些问题,笔者相信这些问题其他同学也有可能遇到。为了让大家可以更好地学习本专栏内容,笔者特意推出了该篇专…...

[2023.09.25]:Rust编写基于web_sys的编辑器:输入光标再次定位的小结

前些天,写了探索Rust编写基于web_sys的WebAssembly编辑器:挑战输入光标定位的实践,经过后续的开发检验,我发现了一个问题,就是光标消失了。为了继续输入,用户需要再次使用鼠标点击。现在我已经弄清楚了导致…...

估计、偏差和方差

一、介绍 统计领域为我们提供了很多工具来实现机器学习目标,不仅可以解决训练集上的任务,还可以泛化。基本的概念,例如参数估计、偏差和方差,对于正式地刻画泛化、欠拟合和过拟合都非常有帮助。 二、参数估计 参数估计 是统计学…...

正态分布的概率密度函数|正态分布检验|Q-Q图

正态分布的概率密度函数(Probability Density Function,简称PDF)的函数取值是指在给定的正态分布参数(均值 μ 和标准差 σ)下,对于特定的随机变量取值 x,计算得到的概率密度值 f(x)。这个值表示…...

【接口测试】HTTP协议

一、HTTP 协议基础 HTTP 简介 HTTP 是一个客户端终端(用户)和服务器端(网站)请求和应答的标准(TCP)。通常是由客户端发起一个请求,创建一个到服务器的 TCP 连接,当服务器监听到客户…...

【重新定义matlab强大系列十四】基于问题求解有/无约束非线性优化

🔗 运行环境:Matlab 🚩 撰写作者:左手の明天 🥇 精选专栏:《python》 🔥 推荐专栏:《算法研究》 #### 防伪水印——左手の明天 #### 💗 大家好🤗&#x1f91…...

MySQL 索引介绍和最佳实践

目录 一、前言二、索引类型1.1 主键索引(PRIMARY KEY)1.2 唯一索引(UNIQUE)1.3 普通索引(NORMAL)1.3.1 单列普通索引1.3.2 单列前缀普通索引1.3.3 多列普通索引1.3.4 多列前缀普通索引 1.4 空间索引&#x…...

区块链(7):p2p去中心化之初始化websoket服务端

1 整个流程梳理 服务开启onStart()连接打开onOpen()处理接收到的消息onMesage()连接关闭onClose()异常处理onError()2 创建p2p实现类 package com.example.demo.service;import com.example.demo.entity.BlockChain; import org.java_websocket.WebSocket; import org.java_we…...

原型、原型链、判断数据类型

目录 作用 原型链 引用类型:__proto__(隐式原型)属性,属性值是对象函数:prototype(原型)属性,属性值是对象 Function:本身也是函数 相关方法 person.prototype.isPrototypeOf(stu) Object.getPrototypeOf(objec…...

pycharm中配置torch

在控制台cmd中安装好torch后,在pycharm中使用torch,需要进行简单设置即可。 在pycharm中新建一个工程,在file文件中打开setting 在setting中找到project interpreter编译器 找到conda environment的环境配置,设置好相应的目录 新…...

什么是Times New Roman 字体

如何评价 Times New Roman 字体?:https://www.zhihu.com/question/24614549?sortcreated 新罗马字体是Times New Roman字体,是Office Word默认自带的英文字体之一。 中英文字体 写作中,英文和数字的标准字体为 Times New Roma…...

企业会议新闻稿怎么写?会议类新闻稿如何撰写?

企业会议新闻稿是企业对外传递信息的重要途径之一,它能够将企业的决策、动态以及成果展示给公众。本文伯乐网络传媒将详细解析企业会议新闻稿的写作要点和技巧,以及常见问题及解决方法,帮助大家更好地完成企业会议新闻稿的撰写工作。 一、企业…...

算法 滑动窗口最大值-(双指针+队列)

牛客网: BM45 题目: 数组num, 窗口大小size, 所有窗口内的最大值 思路: 用队列作为窗口,窗口内存储数组坐标,left window[0], right从数组0开始遍历完数组,每次新增元素时,(1)先对窗口大小进行收缩到size大小范围,即…...

Java 并发编程面试题——BlockingQueue

目录 1.什么是阻塞队列 (BlockingQueue)?2.BlockingQueue 有哪些核心方法?3.BlockingQueue 有哪些常用的实现类?3.1.ArrayBlockingQueue3.2.DelayQueue3.3.LinkedBlockingQueue3.4.PriorityBlockingQueue3.5.SynchronousQueue 4.✨BlockingQu…...

Ubuntu Nacos开机自启动服务

1、创建service文件 在/lib/systemd/system目录下创建nacos.service文件 [Unit] Descriptionalibaba nacos Afternetwork.target Documentationhttps://nacos.io/zh-cn/[Service] Userroot Grouproot Typeforking Environment"JAVA_HOME/usr/local/programs/jdk-8u333-li…...

C++核心编程--继承篇

4.6、继承 继承是面向对象三大特征之一 有些类与类之间存在特殊的关系,例如下图中: ​ 我们发现,定义这些类的定义时,都拥有上一级的一些共性,还有一些自己的特性。那么我们遇到重复的东西时,就可以考虑使…...

小程序 解决自定义弹窗滚动穿透问题,解决弹窗背景内容滚动问题

方法一、catchtouchmove"true"&#xff0c; 可以实现弹框背景不滚动&#xff0c;但是也会导致弹框自身无法滚动&#xff0c;如果你的弹窗本身是不需要滚动的&#xff0c;用这个方法是极佳的。 <view class"pop" catchtouchmove"true"> …...

win10搭建Selenium环境+java+IDEA(2)

接着上一个搭建环境开始叙述&#xff1a;win10系统x64安装java环境以及搭建自动化测试环境_荟K的博客-CSDN博客 上一步结尾的浏览器驱动&#xff0c;本人后面改到了谷歌浏览器.exe文件夹下&#xff1a; 这里需要注意&#xff0c;这个新路径要加载到系统环境变量中。 上一步下…...

抢先一步感受未来:Raspberry Pi 5正式发布!

在经历了几年全球供应链困境导致 Raspberry Pi 单板计算机的产能降低和零售价格上涨之后&#xff0c;今天终于迎来了更新。Raspberry Pi 4 上市四年后&#xff0c;今天Raspberry Pi 5正式发布&#xff01;新推出的 Raspberry Pi 5 配备了经过大幅改进升级的SoC&#xff0c;带来…...

【教程】Ubuntu自动查看有哪些用户名与密码相同的账户,并统一修改密码

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhagn.cn] 目录 背景说明 开始操作 修改密码 背景说明 有些用户为了图方便或者初始创建用户默认设置等原因&#xff0c;会将密码设置为与用户名相同&#xff0c;但这就使得非常不安全。甚至如果该用户具有sudo权限&#…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...