多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测(SE注意力机制)
多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测(SE注意力机制)
目录
- 多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测(SE注意力机制)
- 预测效果
- 基本描述
- 模型描述
- 程序设计
- 参考资料
预测效果
基本描述
1.Matlab实现WOA-CNN-GRU鲸鱼算法优化卷积门控循环单元多变量时间序列预测;
2.运行环境为Matlab2021b;
3…data为数据集,excel数据,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,
main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;
5.鲸鱼算法优化学习率,隐藏层节点,正则化系数;
模型描述
注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。
程序设计
- 完整程序和数据获取方式:私信博主回复MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测(SE注意力机制)。
%% 优化算法参数设置
SearchAgents_no = 8; % 数量
Max_iteration = 5; % 最大迭代次数
dim = 3; % 优化参数个数
lb = [1e-3,10 1e-4]; % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1]; % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=WOA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));
best_hd = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph(); % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence") % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")]; % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same") % 建立卷积层,卷积核大小[3, 1],16个特征图reluLayer("Name", "relu_1") % Relu 激活层lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold") % 建立序列反折叠层flattenLayer("Name", "flatten") % 网络铺平层fullyConnectedLayer(num_class, "Name", "fc") % 分类层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1"); % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in"); % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法'MaxEpochs', 500,... % 最大训练次数 'InitialLearnRate', best_lr,... % 初始学习率为0.001'L2Regularization', best_l2,... % L2正则化参数'LearnRateSchedule', 'piecewise',... % 学习率下降'LearnRateDropFactor', 0.1,... % 学习率下降因子 0.1'LearnRateDropPeriod', 400,... % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',... % 每次训练打乱数据集'ValidationPatience', Inf,... % 关闭验证'Plots', 'training-progress',... % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:

多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测(SE注意力机制)
多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测(SE注意力机制) 目录 多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测(SE注意力机制)预测效果基本描述模型描述程序设计参考资料 预测效果 基本描述…...
1042 字符统计
description 请编写程序,找出一段给定文字中出现最频繁的那个英文字母。 输入格式: 输入在一行中给出一个长度不超过 1000 的字符串。字符串由 ASCII 码表中任意可见字符及空格组成,至少包含 1 个英文字母,以回车结束ÿ…...

3 OpenCV两张图片实现稀疏点云的生成
前文: 1 基于SIFT图像特征识别的匹配方法比较与实现 2 OpenCV实现的F矩阵RANSAC原理与实践 1 E矩阵 1.1 由F到E E K T ∗ F ∗ K E K^T * F * K EKT∗F∗K E 矩阵可以直接通过之前算好的 F 矩阵与相机内参 K 矩阵获得 Mat E K.t() * F * K;相机内参获得的方式…...
在Springboot项目中使用Redis提供给Lua的脚本
在Springboot项目中使用Redis提供给Lua的脚本 在Spring Boot项目中,你可以使用RedisTemplate来执行Lua脚本。RedisTemplate是Spring Data Redis提供的一个Redis客户端,它可以方便地与Redis进行交互。以下是使用RedisTemplate执行Lua脚本的一般步骤&…...

分类预测 | MATLAB实现NGO-CNN北方苍鹰算法优化卷积神经网络数据分类预测
分类预测 | MATLAB实现NGO-CNN北方苍鹰算法优化卷积神经网络数据分类预测 目录 分类预测 | MATLAB实现NGO-CNN北方苍鹰算法优化卷积神经网络数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现NGO-CNN北方苍鹰算法优化卷积神经网络数据分类预测&…...

Linux或Centos查看CPU和内存占用情况_top只能查看对应的命令_如何查看具体进程---linux工作笔记062
一般我们都是用top去查看,但是top查看的结果,不能看出,具体是哪个程序占用的,这就很苦恼.. 其实如果有时间的话,再去专门看一下网络安全和linux脚本以及命令方面的,比较系统的看一下比较好.现在积累的都是工作中用到的,比较零散的知识. 如果用top,比如说这里的java,就只能知道…...
什么是DevOps
文章目录 一、概念二、地位三、目标四、要求五、具体手段 一、概念 是一组过程、方法与系统的统称,有助于打破开发、测试、运维、交付部门之间的壁垒,提高部门间的沟通协助能力。 二、地位 应成为公司的一种理念、文化、哲学。 三、目标 实现更加高…...
力扣每日一题
605. 种花问题 - 力扣(LeetCode) 动态规划 class Solution { public:bool canPlaceFlowers(vector<int>& flowerbed, int n) {int m flowerbed.size();if(1 m)return !flowerbed[0] > n;else if(2 m)return ((!flowerbed[0] &&…...

测试OpenCvSharp库的模板匹配功能
微信公众号“Dotnet讲堂”的文章《c#实现模板匹配,并输出匹配坐标》(参考文献1)中介绍了采用OpenCVSharp库实现模板匹配功能,也即在目标图片中定位指定图片内容的示例,本文参照参考文献1-4,学习并测试OpenC…...

网络编程day04(网络属性函数、广播、组播、TCP并发)
今日任务 对于newfd的话,最好是另存然后传入给分支线程,避免父子线程操作同一个文件描述符 ------------在tcp多线程服务端---------- 如果使用全局变量,或者指针方式间接访问,会导致所有线程共用一份newfd和cin,那么…...

HALCON支持GPU加速的算子有哪些?
参考例程get_operator_info。 get_opencl_operators这里可以查看到所有支持gpu加速的算子。 支持的算子列表: crop_rectangle1,deviation_image,mean_image,points_harris,gray_opening_shape, gray_dilat…...

MacBook Pro 电池电量限制充电怎么设置AlDente Pro for Mac最大充电限制工具
通过充电电量限制工具可以更好的保护MacBook Pro的电池,通过 AlDente Pro 您可以设置电池的最大充电百分比设置为 20% 至 100%,然后,它将保持在所需的电池百分比,然后再次使用电源适配器进行充电。 AlDent…...

毕业设计选题之Java+springboot线上蔬菜销售与配送系统(源码+调试+开题+lw)
💕💕作者:计算机源码社 💕💕个人简介:本人七年开发经验,擅长Java、Python、PHP、.NET、微信小程序、爬虫、大数据等,大家有这一块的问题可以一起交流! 💕&…...
【Leetcode】162.寻找峰值
一、题目 1、题目描述 峰值元素是指其值严格大于左右相邻值的元素。 给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。 你可以假设 nums[-1] = nums[n] = -∞ 。 你必须实现时间复杂度为 O(log n…...

SpringBoot集成MinIO8.0
一、安装MinIO 中文官网地址:https://www.minio.org.cn/download.shtml 官网地址:https://min.io/download 官网有相应的安装命令,可查看 建议引用相应版本的依赖 二、集成SpringBoot 1.引入依赖 <dependency><groupId>io.…...
蓝桥等考Python组别五级007
第一部分:选择题 1、Python L5 (15分) 表达式“not a > 0”等价于下面哪个表达式?( ) a < 0a == 0a <= 0a in 0正确答案:C 2、Python L5 (15分) 执行下面的程序,当用键盘输入10时,输出结果是( )。 n &...
【装机】通过快捷键设置BIOS从U盘启动
当要重装系统的时候,是否会遇到一个问题,进入bios的时候就开始凌乱了,因为不懂得怎么用bios设置u盘启动.不要着急,下面来一波小白装机教程 总的来讲,设置电脑从U盘启动一共有两种方法: 第一种:开机时候按快捷键,然后选择U盘启动第…...

关于操作系统与内核科普
关于操作系统与内核科普 一.什么是操作系统 操作系统是管理计算机硬件与软件资源的计算机程序。它为计算机硬件和软件提供了一种中间层。 操作系统是一种软件,主要目的有三种: 一.管理计算机资源,这些资源包括CPU,内存࿰…...
算法练习3——删除有序数组中的重复项
LeetCode 26 删除有序数组中的重复项 给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums …...

《YOLOv5:从入门到实战》报错解决 专栏答疑
前言:Hello大家好,我是小哥谈。《YOLOv5:从入门到实战》专栏上线后,部分同学在学习过程中提出了一些问题,笔者相信这些问题其他同学也有可能遇到。为了让大家可以更好地学习本专栏内容,笔者特意推出了该篇专…...

idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...

Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...