当前位置: 首页 > news >正文

【Leetcode】162.寻找峰值

一、题目

1、题目描述

峰值元素是指其值严格大于左右相邻值的元素。

给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。

你可以假设 nums[-1] = nums[n] = -∞

你必须实现时间复杂度为 O(log n) 的算法来解决此问题。

示例1:

输入:nums = [1,2,3,1]
输出:2
解释:3 是峰值元素,你的函数应该返回其索引 2。

示例2:

输入:nums = [1,2,1,3,5,6,4]
输出:1 或 5 
解释:你的函数可以返回索引 1,其峰值元素为 2;或者返回索引 5, 其峰值元素为 6。

提示:

  • 1 <= nums.length <= 1000
  • -231 <= nums[i] <= 231 - 1
  • 对于所有有效的 i 都有 nums[i] != nums[i + 1]

2、基础框架

class 

相关文章:

【Leetcode】162.寻找峰值

一、题目 1、题目描述 峰值元素是指其值严格大于左右相邻值的元素。 给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。 你可以假设 nums[-1] = nums[n] = -∞ 。 你必须实现时间复杂度为 O(log n…...

SpringBoot集成MinIO8.0

一、安装MinIO 中文官网地址&#xff1a;https://www.minio.org.cn/download.shtml 官网地址&#xff1a;https://min.io/download 官网有相应的安装命令&#xff0c;可查看 建议引用相应版本的依赖 二、集成SpringBoot 1.引入依赖 <dependency><groupId>io.…...

蓝桥等考Python组别五级007

第一部分:选择题 1、Python L5 (15分) 表达式“not a > 0”等价于下面哪个表达式?( ) a < 0a == 0a <= 0a in 0正确答案:C 2、Python L5 (15分) 执行下面的程序,当用键盘输入10时,输出结果是( )。 n &...

【装机】通过快捷键设置BIOS从U盘启动

当要重装系统的时候,是否会遇到一个问题,进入bios的时候就开始凌乱了,因为不懂得怎么用bios设置u盘启动.不要着急,下面来一波小白装机教程 总的来讲&#xff0c;设置电脑从U盘启动一共有两种方法&#xff1a; 第一种&#xff1a;开机时候按快捷键&#xff0c;然后选择U盘启动第…...

关于操作系统与内核科普

关于操作系统与内核科普 一.什么是操作系统 操作系统是管理计算机硬件与软件资源的计算机程序。它为计算机硬件和软件提供了一种中间层。 操作系统是一种软件&#xff0c;主要目的有三种&#xff1a; 一.管理计算机资源&#xff0c;这些资源包括CPU&#xff0c;内存&#xff0…...

算法练习3——删除有序数组中的重复项

LeetCode 26 删除有序数组中的重复项 给你一个 非严格递增排列 的数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums …...

《YOLOv5:从入门到实战》报错解决 专栏答疑

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。《YOLOv5&#xff1a;从入门到实战》专栏上线后&#xff0c;部分同学在学习过程中提出了一些问题&#xff0c;笔者相信这些问题其他同学也有可能遇到。为了让大家可以更好地学习本专栏内容&#xff0c;笔者特意推出了该篇专…...

[2023.09.25]:Rust编写基于web_sys的编辑器:输入光标再次定位的小结

前些天&#xff0c;写了探索Rust编写基于web_sys的WebAssembly编辑器&#xff1a;挑战输入光标定位的实践&#xff0c;经过后续的开发检验&#xff0c;我发现了一个问题&#xff0c;就是光标消失了。为了继续输入&#xff0c;用户需要再次使用鼠标点击。现在我已经弄清楚了导致…...

估计、偏差和方差

一、介绍 统计领域为我们提供了很多工具来实现机器学习目标&#xff0c;不仅可以解决训练集上的任务&#xff0c;还可以泛化。基本的概念&#xff0c;例如参数估计、偏差和方差&#xff0c;对于正式地刻画泛化、欠拟合和过拟合都非常有帮助。 二、参数估计 参数估计 是统计学…...

正态分布的概率密度函数|正态分布检验|Q-Q图

正态分布的概率密度函数&#xff08;Probability Density Function&#xff0c;简称PDF&#xff09;的函数取值是指在给定的正态分布参数&#xff08;均值 μ 和标准差 σ&#xff09;下&#xff0c;对于特定的随机变量取值 x&#xff0c;计算得到的概率密度值 f(x)。这个值表示…...

【接口测试】HTTP协议

一、HTTP 协议基础 HTTP 简介 HTTP 是一个客户端终端&#xff08;用户&#xff09;和服务器端&#xff08;网站&#xff09;请求和应答的标准&#xff08;TCP&#xff09;。通常是由客户端发起一个请求&#xff0c;创建一个到服务器的 TCP 连接&#xff0c;当服务器监听到客户…...

【重新定义matlab强大系列十四】基于问题求解有/无约束非线性优化

&#x1f517; 运行环境&#xff1a;Matlab &#x1f6a9; 撰写作者&#xff1a;左手の明天 &#x1f947; 精选专栏&#xff1a;《python》 &#x1f525; 推荐专栏&#xff1a;《算法研究》 #### 防伪水印——左手の明天 #### &#x1f497; 大家好&#x1f917;&#x1f91…...

MySQL 索引介绍和最佳实践

目录 一、前言二、索引类型1.1 主键索引&#xff08;PRIMARY KEY&#xff09;1.2 唯一索引&#xff08;UNIQUE&#xff09;1.3 普通索引&#xff08;NORMAL&#xff09;1.3.1 单列普通索引1.3.2 单列前缀普通索引1.3.3 多列普通索引1.3.4 多列前缀普通索引 1.4 空间索引&#x…...

区块链(7):p2p去中心化之初始化websoket服务端

1 整个流程梳理 服务开启onStart()连接打开onOpen()处理接收到的消息onMesage()连接关闭onClose()异常处理onError()2 创建p2p实现类 package com.example.demo.service;import com.example.demo.entity.BlockChain; import org.java_websocket.WebSocket; import org.java_we…...

原型、原型链、判断数据类型

目录 作用 原型链 引用类型&#xff1a;__proto__(隐式原型)属性&#xff0c;属性值是对象函数&#xff1a;prototype(原型)属性&#xff0c;属性值是对象 Function&#xff1a;本身也是函数 相关方法 person.prototype.isPrototypeOf(stu) Object.getPrototypeOf(objec…...

pycharm中配置torch

在控制台cmd中安装好torch后&#xff0c;在pycharm中使用torch&#xff0c;需要进行简单设置即可。 在pycharm中新建一个工程&#xff0c;在file文件中打开setting 在setting中找到project interpreter编译器 找到conda environment的环境配置&#xff0c;设置好相应的目录 新…...

什么是Times New Roman 字体

如何评价 Times New Roman 字体&#xff1f;&#xff1a;https://www.zhihu.com/question/24614549?sortcreated 新罗马字体是Times New Roman字体&#xff0c;是Office Word默认自带的英文字体之一。 中英文字体 写作中&#xff0c;英文和数字的标准字体为 Times New Roma…...

企业会议新闻稿怎么写?会议类新闻稿如何撰写?

企业会议新闻稿是企业对外传递信息的重要途径之一&#xff0c;它能够将企业的决策、动态以及成果展示给公众。本文伯乐网络传媒将详细解析企业会议新闻稿的写作要点和技巧&#xff0c;以及常见问题及解决方法&#xff0c;帮助大家更好地完成企业会议新闻稿的撰写工作。 一、企业…...

算法 滑动窗口最大值-(双指针+队列)

牛客网: BM45 题目: 数组num, 窗口大小size, 所有窗口内的最大值 思路: 用队列作为窗口&#xff0c;窗口内存储数组坐标&#xff0c;left window[0], right从数组0开始遍历完数组&#xff0c;每次新增元素时&#xff0c;(1)先对窗口大小进行收缩到size大小范围&#xff0c;即…...

Java 并发编程面试题——BlockingQueue

目录 1.什么是阻塞队列 (BlockingQueue)&#xff1f;2.BlockingQueue 有哪些核心方法&#xff1f;3.BlockingQueue 有哪些常用的实现类&#xff1f;3.1.ArrayBlockingQueue3.2.DelayQueue3.3.LinkedBlockingQueue3.4.PriorityBlockingQueue3.5.SynchronousQueue 4.✨BlockingQu…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...