当前位置: 首页 > news >正文

邓俊辉《数据结构》→ “2.6.5 二分查找(版本A)”之“成功查找长度”递推式推导

【问题描述】
邓俊辉的《数据结构(C++语言版)(第3版)》(ISBN:9787302330646)中,开始于第48页的“2.6.5 
二分查找(版本A)”内容在第50页详述了“成功查找长度”的递推式,但此递推式乍一看令人费解。故为了说明问题,进行一些约定并详述如下:
● 既然是二分查找,所以给定的序列必定是有序的。
● 不失一般性,约定有序序列的长度
\color{red} n=2^k-1,这样便可构建一个高度为 k 的的二分查找树。
● 设
C(k) 表示高度为 k 的满的二分查找树中所有元素的查找长度总和。此时,问题就可以用递归方法求解。即 k 层的满二叉树,可以转化为左右两个 k-1 层的满二叉树。 依据邓俊辉《数据结构(C++语言版)(第3版)》(ISBN:9787302330646)中“2.6.5 二分查找(版本A)”的算法陈述,可知:
(1)第 k 层的查找长度为2(也即 \color{red} C(1)=2);
(2)且稍加观察会发现左面的 k-1 层的子树所有元素的查找长度都会相对于以第 k-1 层为顶层时的查找长度多1(
左子树共多 \color{red} 2^{k-1}-1)。
(3)同样右面的 k-1 层的子树所有元素的查找长度都会相对于以第 k-1 层为顶层时的查找长度多2(
右子树共多 \color{red} 2\times (2^{k-1}-1))。
所以,根据递归算法的设计思想,需要把这些长度补上,共同构成 C(k)。


综上,可得 C(k) 的递推公式如下:
C(k)=[C(k-1)+(2^{k-1}-1)]+2+[C(k-1)+2\cdot (2^{k-1}-1)]
化简得:\color{red} C(k)=2\cdot C(k-1)+3\cdot 2^{k-1}-1

若令,\color{red} F(k)=C(k)-3k\cdot 2^{k-1}-1
则有:
F(1)=C(1)-3\cdot 1\cdot 2^{1-1}-1=2-3-1=-2 \\ F(k)=C(k)-3k\cdot 2^{k-1}-1=2\cdot C(k-1)+3\cdot 2^{k-1}-1-3k\cdot 2^{k-1}-1 \\ =2\cdot C(k-1)-2\cdot(3k\cdot2^{k-2}-3\cdot 2^{k-2})-2 \\ =2\cdot C(k-1)-2\cdot 3 \cdot (k-1) \cdot 2^{k-2}-2 \\ =2[C(k-1)-3 \cdot (k-1) \cdot 2^{k-2}-1] \\ =2\cdot F(k-1)

故利用上文得出的 \color{red} F(k)=2\cdot F(k-1),可进一步得出:
F(k)=2\cdot F(k-1)=2^2\cdot F(k-2)=2^3\cdot F(k-3)=\cdots \\ =2^{k-1}\cdot F(1)=-2^k

于是将 F(k)=-2^k 代入 F(k)=C(k)-3k\cdot 2^{k-1}-1 可得:
C(k)=F(k)+3k\cdot 2^{k-1}+1 \\ =-2^k+3k\cdot 2^{k-1}+1 \\ =(3k/2-1)\cdot (2^k-1)+3k/2

从而可得平均查找长度为:C(k)/(2^k-1)=3k/2-1+3k/2/(2^k-1)=3k/2-1+O(\varepsilon )
忽略掉低阶项、常数项、系数项,可得本版本的二分查找的平均查找长度的时间复杂度为:\color{red} O(1.5k)
​​​​​​​



【参考文献】
https://ask.csdn.net/questions/699067
https://www.bilibili.com/video/BV1C54y1L7JM/
https://www.bilibili.com/video/BV1C54y1L7JM/?p=76&vd_source=fea4f130ba05b1c873be1db0c639fc56
https://blog.csdn.net/hnjzsyjyj/article/details/133100051
https://blog.csdn.net/qq_33499861/article/details/105103708




 

相关文章:

邓俊辉《数据结构》→ “2.6.5 二分查找(版本A)”之“成功查找长度”递推式推导

【问题描述】 邓俊辉的《数据结构(C语言版)(第3版)》(ISBN:9787302330646)中,开始于第48页的“2.6.5 二分查找(版本A)”内容在第50页详述了“成功查找长度”的…...

Linux文件查找,别名,用户组综合练习

1.文件查看: 查看/etc/passwd文件的第5行 [rootserver ~]# head -5 /etc/passwd root:x:0:0:root:/root:/bin/bash bin:x:1:1:bin:/bin:/sbin/nologin daemon:x:2:2:daemon:/sbin:/sbin/nologin adm:x:3:4:adm:/var/adm:/sbin/nologin lp:x:4:7:lp:/var/spool/lpd:/sbin/nologi…...

【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现【更新中】

【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现 本文介绍基于libsvm代理模型算法的特征排序方法合集,包括: 1.基于每个特征预测精度进行排序(libsvm代理模型) 2.基于相关系数corr的…...

第三章 图标辅助元素的定制

第三章 图标辅助元素的定制 1.认识图表常用的辅助元素 ​ 图表的辅助元素是指除了根据数据绘制的图形之外的元素,常用的辅助元素包括坐标轴、标题、图例、网格、参考线、参考区域、注释文本和表格,它们都可以对图形进行补充说明。 ​ 上图中图表常用辅…...

【前端】ECMAScript6从入门到进阶

【前端】ECMAScript6从入门到进阶 1.ES6简介及环境搭建 1.1.ECMAScript 6简介 (1)ECMAScript 6是什么 ECMAScript 6.0(以下简称 ES6)是 JavaScript 语言的下一代标准,已经在2015年6月正式发布了。它的目标&#xff…...

Android Shape设置背景

设置背景时&#xff0c;经常这样 android:background“drawable/xxx” 。如果是纯色图片&#xff0c;可以考虑用 shape 替代。 shape 相比图片&#xff0c;减少资源占用&#xff0c;缩减APK体积。 开始使用。 <?xml version"1.0" encoding"utf-8"?…...

什么是GraphQL?它与传统的REST API有什么不同?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 什么是GraphQL&#xff1f;⭐ 与传统的REST API 的不同⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣…...

如何定时备份使用Docker构建的MySQL容器中的数据库

&#x1f468;&#x1f3fb;‍&#x1f4bb; 热爱摄影的程序员 &#x1f468;&#x1f3fb;‍&#x1f3a8; 喜欢编码的设计师 &#x1f9d5;&#x1f3fb; 擅长设计的剪辑师 &#x1f9d1;&#x1f3fb;‍&#x1f3eb; 一位高冷无情的编码爱好者 大家好&#xff0c;我是 DevO…...

Java【手撕链表】LeetCode 143. “重排链表“, 图文详解思路分析 + 代码

文章目录 前言一、两数相加1, 题目2, 思路分析2,1 找到中间结点2.2, 逆序后半段链表2.3, 合并两个链表 3, 代码 前言 各位读者好, 我是小陈, 这是我的个人主页, 希望我的专栏能够帮助到你: &#x1f4d5; JavaSE基础: 基础语法, 类和对象, 封装继承多态, 接口, 综合小练习图书管…...

C语言 cortex-A7核 按键中断 实验【重点】

一、KEY1 include/key.h #ifndef __KEY_H__ #define __KEY_H__#include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_exti.h" #include "stm32mp1xx_gic.h"//RCC/GPIO章节初始化 void hal_rcc_gpio_init…...

freertos中函数调用和启动第一个任务(栈相关!!!!!!)

本内容仅就一些较难理解的点讲解&#xff0c;请结合其它文章实用 在函数调用时&#xff0c;m3的处理器使用r0-r3共四个寄存器传参&#xff0c;其余的使用栈传参。 但是&#xff0c;如果传入的参数是全局变量&#xff0c;则不需传参&#xff0c;因为全局变量在函数内部是可见的…...

【PHP】如何关闭buffer实时输出内容到前端

前言 默认情况下&#xff0c;我们在PHP里使用echo等函数输出的内容&#xff0c;是不会马上发送给前端的&#xff0c;原因是有 buffer 的存在&#xff0c;buffer又分两处&#xff0c;一处是PHP本身的buffer&#xff0c;另一处是Nginx的buffer。只有当buffer满了之后&#xff0c…...

Scala第二章节

Scala第二章节 scala总目录 章节目标 掌握变量, 字符串的定义和使用掌握数据类型的划分和数据类型转换的内容掌握键盘录入功能理解Scala中的常量, 标识符相关内容 1. 输出语句和分号 1.1 输出语句 方式一: 换行输出 格式: println(里边写你要打印到控制台的数据);方式二…...

Spring修炼之路(2)依赖注入(DI)

一、概念 依赖注入&#xff08;Dependency Injection,DI&#xff09;。 测试pojo类 : Address.java 依赖 : 指Bean对象的创建依赖于容器 . Bean对象的依赖资源 . 注入 : 指Bean对象所依赖的资源 , 由容器来设置和装配 . 二、 注入方式 2.1构造器注入 我们在之前的案例已经…...

编写Android.mk / Android.bp 引用三方 jar 包,aar包,so 库

一.前言 在Android10之后&#xff0c;所有项目工程中&#xff0c;官方推荐使用Android.bp去编译构建&#xff0c;以前使用Android.mk构建的项目随着版本迭代升级&#xff0c;慢慢需要变更为Android.bp&#xff0c; 两者的语法都需要去了解并熟练使用。 笔者之前写过Android.mk的…...

【kylin】【ubuntu】搭建本地源

文章目录 一、制作一个本地源仓库制作ubuntu本地仓库制作kylin本地源 二、制作内网源服务器ubuntu系统kylin系统 三、使用内网源ubuntukylin 一、制作一个本地源仓库 制作ubuntu本地仓库 首先需要构建一个本地仓库&#xff0c;用来存放软件包 mkdir -p /path/to/localname/pac…...

为什么 Go 语言 struct 要使用 tags

在 Go 语言中&#xff0c;struct 是一种常见的数据类型&#xff0c;它可以用来表示复杂的数据结构。在 struct 中&#xff0c;我们可以定义多个字段&#xff0c;每个字段可以有不同的类型和名称。 除了这些基本信息之外&#xff0c;Go 还提供了 struct tags&#xff0c;它可以用…...

WebGL笔记:WebGL中JS与GLSL ES 语言通信,着色器间的数据传输示例:用鼠标控制点位

用鼠标控制点位 <canvas id"canvas"></canvas><!-- 顶点着色器 --> <script id"vertexShader" type"x-shader/x-vertex">attribute vec4 a_Position;void main() {// 点位gl_Position a_Position;// 尺寸gl_PointSize…...

算法 主持人调度-(双指针+贪心)

牛客网: BM96 题目: 一个主持人只能参加一个活动&#xff0c;至少需要多少主持人 思路: 对start, end排序从小到大&#xff1b;初始化指针l, r 0, 0&#xff1b;start[r]< end[l]时需要累加人数同时r&#xff0c;否则l,r同时移动&#xff1b;直至不再满中l<n &&am…...

Elasticsearch 集群时的内部结构是怎样的?

Apache Lucene : Flush, Commit Elasticsearch 是一个基于 Apache Lucene 构建的搜索引擎。 它利用 Lucene 的倒排索引、查询处理和返回搜索结果等功能来执行搜索。 它还扩展了 Lucene 的功能&#xff0c;添加分布式处理功能以支持大型数据集的搜索。 让我们看一下 Apache Luc…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...