线性代数(七) 矩阵分析
前言
从性线变换我们得出,矩阵和函数是密不可分的。如何用函数的思维来分析矩阵。
矩阵的序列
通过这个定义我们就定义了矩阵序列的收敛性。
研究矩阵序列收敛性的常用方法,是用《常见向量范数和矩阵范数》来研究矩阵序列的极限。
长度是范数的一个特例。事实上,Frobenius范数对应的就是长度。我们在线性空间中定义内积时,就是把这三条性质作为公理来定义内积的
收敛矩阵
在矩阵序列中,最常见的是由一个方阵的幂构成的序列,关于这样的矩阵序列有如下概念和收敛定理:
r(A)是谱半径是一个矩阵的特征值绝对值中的最大值,用于描述矩阵的特征值的尺度大小。
矩阵级数
矩阵幂级数
- 根据幂级数收敛半径定理求出收敛半径r
- 根据《常见向量范数和矩阵范数》将矩阵A量化,看否在收敛区间中
- 即 a k = k = > r = lim k → ∞ | a k + 1 a k | = | k + 1 k | = 1 a_k= k => r= \lim\limits_{k \to \infty} |\dfrac{a_{k+1}}{a_k}|=|\dfrac{{k+1}}{k}|= 1 ak=k=>r=k→∞lim|akak+1|=|kk+1|=1
- 由范式2得到 p ( A ) = 5 6 p(A)=\dfrac{5}{6} p(A)=65
Neumann级数
- 注1:假设E-A不可逆,那么E-A有0特征值,A的特征值为1。而A的谱半径小于1,矛盾,故E-A可逆
- 注2:A的谱半径小于1,由定理3可知A为收敛矩阵。那么 A k + 1 A^{k+1} Ak+1 就趋近于0(k趋于无穷)
矩阵函数
矩阵函数的计算
常用的有以下几种方法
待定系数法
- 求矩阵A的特征多项式 ∣ λ I − A ∣ |\lambda I - A| ∣λI−A∣
- 利用Hamilton-Cayley定理,求出A的一次性化零多项式 ψ ( A ) = 0 \psi(A)=0 ψ(A)=0
- 求解 f ( A ) f(A) f(A)多项式
- 当 A = λ ,即 ψ ( A ) = f ( A ) A=\lambda, 即\psi(A)=f(A) A=λ,即ψ(A)=f(A)
- sin的导注是cos
- e x e^x ex的导数是它本身的导数,因此, e ( 2 t ) 的导数是 2 e ( 2 t ) e^(2t) 的导数是 2e^(2t) e(2t)的导数是2e(2t)。
利用相似对角化
利用Jordan标准形
主要参考
《常见向量范数和矩阵范数》
《矩阵分析》
《7.2.3幂级数收敛半径定理》
《矩阵序列与矩阵级数》
《矩阵函数的常见求法》
相关文章:

线性代数(七) 矩阵分析
前言 从性线变换我们得出,矩阵和函数是密不可分的。如何用函数的思维来分析矩阵。 矩阵的序列 通过这个定义我们就定义了矩阵序列的收敛性。 研究矩阵序列收敛性的常用方法,是用《常见向量范数和矩阵范数》来研究矩阵序列的极限。 长度是范数的一个特…...

myArm 全新七轴桌面型机械臂
引言 在不断演进的科技世界中,我们始终追求创新和卓越,以满足客户的需求并超越他们的期望。今天,我们很高兴地宣布我们的最新产品——myArm 300 Pi,一款七轴的桌面型机械臂。这款产品的独特之处在于其灵活性和可编程性,…...
tomcat乱码解决
解决乱码 1、修改bin\catalina.bat配置文件 修改tomcat的配置文件,找到tomcat路径下的\bin目录下的catalina.bat文件,修改 set “JAVA_OPTS%JAVA_OPTS% %JSSE_OPTS% -Dfile.encodingUTF-8 -Dsun.jnu.encodingUTF-8 ” 2、修改conf\logging.properties配置…...

【Linux】详解线程第三篇——线程同步和生产消费者模型
线程同步和生消模型 前言正式开始再次用黄牛抢票来讲解线程同步的思想通过条件变量来实现线程同步条件变量接口介绍初始化和销毁pthread_cond_waitsignal和broadcast 生产消费者模型三种关系用基本工程师思维再次理解基于生产消费者模型的阻塞队列版本一版本二多生多消 利用RAI…...
k8s 安装
文章目录 k8s 客户端安装k8s集群minikubekindkubeadm 验证 k8s 客户端 用于连接k8s集群,建议下载1.23.x的版本,其他的版本本地运行可能会有莫名其妙的报错 https://dl.k8s.io/release/v1.23.16/bin/linux/amd64/kubectl 安装k8s集群 minikube Minik…...

红队打靶:THE PLANETS: MERCURY打靶思路详解(vulnhub)
目录 写在开头 第一步:主机发现和端口扫描 第二步:Web渗透 第三步:获取初步立足点并搜集信息 第四步:软连接劫持sudo提权 总结与思考 写在开头 本篇博客在自己的理解之上根据大佬红队笔记的视频进行打靶,详述了…...

【网络协议】IP
当连接多个异构的局域网形成强烈需求时,用户不满足于仅在一个局域网内进行通信,他们希望通过更高一层协议最终实现异构网络之间的连接。既然需要通过更高一层的协议将多个局域网进行互联,那么这个协议就必须为不同的局域网环境定义统一的寻址…...
Python 布尔类型
布尔值表示两个值之一:True(真)或False(假)。 布尔值 在编程中,您经常需要知道一个表达式是否为True或False。 您可以在Python中评估任何表达式,并获得两个答案之一:True或False。…...

iOS设备管理器iMazing比iTunes好用吗?有哪些优势
虽然 iTunes 是 Apple 官方指定的 iPhone 数据备份和管理工具,但是一直以来 iTunes 卡顿的使用体验和过慢的备份过程为不少人诟病。如果大家也被 iTunes 体验不佳的备份和管理功能所困扰,那么简单易用、功能强大的iMazing 能为你解决这个问题。 iMazing…...
Opengl之深度测试
在坐标系统小节中,我们渲染了一个3D箱子,并且运用了深度缓冲(Depth Buffer)来防止被阻挡的面渲染到其它面的前面。在这一节中,我们将会更加深入地讨论这些储存在深度缓冲(或z缓冲(z-buffer))中的深度值(Depth Value),以及它们是如何确定一个片段是处于其它片段后方的。 …...
利用ICG-NH2/Amine进行DNA标记1686147-55-6星戈瑞
ICG-NH2(吲哚菁绿胺)可以用于DNA标记,这种标记方法通常涉及到DNA上的胺基反应基团和ICG-NH2之间的化学反应。以下是一种常见的方法,用于利用ICG-NH2标记DNA分子: 步骤: 1.准备目标DNA:你需要准…...
Pyecharts数据可视化
Pyecharts数据可视化 1、Pyecharts模块2、柱状图3、折线图4、饼图5、散点图6、图表合并7、词云8、地图 1、Pyecharts模块 ECharts是百度提供的基于JavaScript的开源可视化库,主要用于Web端数据可视化 Echarts是通过JS实现的,Pyecharts则可以使用Python来…...

集合-List集合
系列文章目录 1.集合-Collection-CSDN博客 2.集合-List集合-CSDN博客 文章目录 目录 系列文章目录 文章目录 前言 一 . 什么是List? 二 . List集合的特点 三 . 常用方法 1.void add(int index, E element): 将指定的元素插入到列表的指定位置。 2.E remove(int in…...
vuex的使用
1 vuex的使用 1 vuex的使用 store/index.js -在Vue中实现集中式状态(数据)管理的一个Vue插件,对vue应用中多个组件的共享状态进行集中式 的管理(读/写),也是一种组件间通信的方式,且适用于任意…...

raw图片处理软件:DxO PhotoLab 6 mac中文版支持相机格式
DxO PhotoLab 6 mac是一款专业的RAW图片处理软件,适用于Mac操作系统。它具有先进的图像处理技术和直观易用的界面,可帮助用户轻松地将RAW格式的照片转换为高质量的JPEG或TIFF图像。 DxO PhotoLab 6支持多种相机品牌的RAW格式,包括佳能、尼康、…...
ReactPortals传送门
ReactPortals传送门 React Portals提供了一种将子节点渲染到父组件以外的DOM节点的解决方案,即允许将JSX作为children渲染至DOM的不同部分,最常见用例是子组件需要从视觉上脱离父容器,例如对话框、浮动工具栏、提示信息等。 描述 <div&…...

【GDB】 command 命令
GDB command 命令 语法 command 命令是一个很好用的调试命令,它配合断点使用,可以在指定的断点执行预先设置的命令 其语法为:command bread_id,这样会提示你输入你要执行的命令,以 end 结束。这个 bread_id 就是用 …...

1038 统计同成绩学生
输入样例: 10 60 75 90 55 75 99 82 90 75 50 3 75 90 88 输出样例: 3 2 0 solution #include <stdio.h> int main(){int n, d, k, hash[101] {0}, a[100000];scanf("%d", &n);for(int i 0; i < n; i){scanf("%d&quo…...

git报错:Failed to connect to 127.0.0.1 port 1080
Bug描述 由于在试了网上的这条命令 git config --global http.proxy socks5 127.0.0.1:1080 git config --global https.proxy socks5 127.0.0.1:1080git config --global http.proxy 127.0.0.1:1080 git config --global https.proxy 127.0.0.1:1080Bug描述:Faile…...

php eayswoole node axios crypto-js 实现大文件分片上传复盘
不啰嗦 直接上步骤 步骤1.开发环境配置 项目需要node.js 做前端支撑 官网下载地址: http://nodejs.cn/download/ 根据自己需要下载对应的版本,我下载的是windows系统64位的版本。 包下载好后 进行安装,安装步骤在此省略... 测试是否安装成功 …...

【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...

练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...