机器学习算法基础--层次聚类法
文章目录
- 1.层次聚类法原理简介
- 2.层次聚类法基础算法演示
- 2.1.Single-linkage的计算方法演示
- 2.2.Complete-linkage的计算方法演示
- 2.3.Group-average的计算方法演示
- 3.层次聚类法拓展算法介绍
- 3.1.质心法原理介绍
- 3.2.基于中点的质心法
- 3.3.Ward方法
- 4.层次聚类法应用实战
- 4.1.层次聚类法聚类应用
- 4.2.层次聚类法聚类树绘制
- 4.2.1.Single-linkage连接方法
- 4.2.2.Complete-linkage连接方法
- 4.2.3.Group-average连接方法
- 4.2.4.Centroid连接方法
- 4.2.5.Ward连接方法
- 5.致谢
1.层次聚类法原理简介
#聚合聚类(层次聚类方法)
"""
1.层次聚类顾名思义就是按照某个层次对样本集进行聚类操作,这里层次并非是真实的层次,实际上指的就是某种距离定义,(我们其实已经学过了很多的距离定义了)
2.层次聚类方法的目标就是采用自下而上的方法去去消除类别的数量,类似与树状图的由叶子结点向根结点靠拢的过程。
3.更简单的说,层次聚类是将初始化的多个类簇看做树节点,每一次迭代都会两两距离相近的类簇进行合并,如此反复,直至最终只剩一个类簇(也就是根结点)。
"""
2.层次聚类法基础算法演示
层次聚类法的三种不同方法:
依据对相似度(距离)的不同定义,将层次聚类法的聚类方法分为三种:
1.Single-linkage:要比较的距离为元素对之间的最小距离。
2.Complete-linkage:要比较的距离为元素对之间的最大距离。
3.Group average:要比较的距离为类之间的平均距离。
我们首先拿出几个数据进行计算演示一番这最基础的算法,如图所示,这是ABCDE五个点的相互之间的距离:

2.1.Single-linkage的计算方法演示
Single-linkage:要比较的距离为元素对之间的最小距离。所以我们需要找到每个点对应的最小距离。
第一步:A的最小距离是B,所以AB先合并,记作{AB}。

第二步:以AB为整体进行对C合并的研究。
最后发现CD最短,合并记作{CD}。
第三步:以{AB}/{CD}为整体进行对E合并的研究。

最后发现CD->E最短,合并记作{CDE}。
第四步:合并最后的两个簇即可,即{AB}{CDE}合并。
2.2.Complete-linkage的计算方法演示
2.Complete-linkage:要比较的距离为元素对之间的最大距离。所以我们需要找到每个点对应的最大距离。
第一步:A与各个元素之间的最大距离的最小距离是B,所以AB先合并,记作{AB}。

第二步:
C与各元素的最大距离的最小值如下所示:

所以C的各元素的最大距离的最小值是D,合并CD并且记作{CD}。
第三步:以{AB}/{CD}为整体进行对E合并的研究。

最后发现CD->E最短,合并记作{CDE}。
第四步:合并最后的两个簇即可,即{AB}{CDE}合并。
2.3.Group-average的计算方法演示
Group-average要比较的距离为元素对之间的最平均距离。所以我们需要找到每个点对应的最平均距离。
第一步:A与各个元素之间的最大距离的最小距离是B,所以AB先合并,记作{AB}。

第二步:
C与各元素的平均距离的最小值如下所示:

所以C的各元素的最平均距离的最小值是D,合并CD并且记作{CD}。
第三步:以{AB}/{CD}为整体进行对E合并的研究。

最后发现CD->E的平均距离最短,合并记作{CDE}。
第四步:合并最后的两个簇即可,即{AB}{CDE}合并。
3.层次聚类法拓展算法介绍
来源:https://blog.csdn.net/huangguohui_123/article/details/106995538
3.1.质心法原理介绍

如果两个族群合并之后,下一步合并时的最小距离反而减小(质心在不断变化),我们则称这种情况为倒置(Reversal/Inversion),在系统树图中表现为交叉(Crossover)现象。
在一些层次聚类方法中,如简单连接、完全连接和平均连接,倒置不可能发生,这些距离的度量是单调的(monotonic)。显然质心方法并不是单调的。
3.2.基于中点的质心法

3.3.Ward方法

4.层次聚类法应用实战
4.1.层次聚类法聚类应用
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import AgglomerativeClustering
from scipy.cluster.hierarchy import dendrogram, linkage
#%%
# 读取数据
data = pd.read_excel('Clustering_5.xlsx')
# 提取特征和标签
X = data.iloc[:, :2].values
y = data['y'].values
# 创建凝聚聚类模型
n_clusters = 5
agg_clustering = AgglomerativeClustering(n_clusters=n_clusters)
# 进行聚类
labels = agg_clustering.fit_predict(X)
#%%
# 绘制聚类结果
plt.figure(figsize=(10, 6))
for i in range(n_clusters):cluster_points = X[labels == i]plt.scatter(cluster_points[:, 0], cluster_points[:, 1], label=f'Cluster {i + 1}',s=16)plt.title('Agglomerative clustering')
plt.legend()
plt.show()
聚类效果比较不错

4.2.层次聚类法聚类树绘制
4.2.1.Single-linkage连接方法
#%%
linked = linkage(X, 'single') # 使用ward方法计算链接
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Single-linkage连接方法')
plt.show()

4.2.2.Complete-linkage连接方法
#%%
linked = linkage(X, 'complete') # 使用ward方法计算链接
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Complete-linkage连接方法')
plt.show()

4.2.3.Group-average连接方法
#%%
linked = linkage(X, 'average') # 使用ward方法计算链接
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Group-average连接方法')
plt.show()

4.2.4.Centroid连接方法
#%%
linked = linkage(X, 'centroid') # 使用ward方法计算链接
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Centroid连接方法')
plt.show()

4.2.5.Ward连接方法
# 绘制树状图(聚类树)
linked = linkage(X, 'ward') # 使用ward方法计算链接
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Ward连接方法')
plt.show()

5.致谢
本章内容的完成离不开以下大佬文章的启发和帮助,在这里列出名单,如果对于内容还有不懂的,可以移步对应的文章进行进一步的理解分析。
1.层次聚类法的基础算法演示https://blog.csdn.net/qq_40206371/article/details/123057888
2.层次聚类法的进阶算法演示https://blog.csdn.net/huangguohui_123/article/details/106995538
在文章的最后再次表达由衷的感谢!!
相关文章:
机器学习算法基础--层次聚类法
文章目录 1.层次聚类法原理简介2.层次聚类法基础算法演示2.1.Single-linkage的计算方法演示2.2.Complete-linkage的计算方法演示2.3.Group-average的计算方法演示 3.层次聚类法拓展算法介绍3.1.质心法原理介绍3.2.基于中点的质心法3.3.Ward方法 4.层次聚类法应用实战4.1.层次聚…...
linux系统中wifi移植方法
第一:移植wifi现象 在linux系统的RK3399中空板上,确认rk3399中控板linux系统已经可以正常运行。本操作是在rk3399中控板上的WIFI模块,linux内核加载wifi驱动后,再配置上正确的wifi密码,就可以实现rk3399中控板通过wifi…...
Machine Learning(study notes)
There is no studying without going crazy Studying alwats drives us crazy 文章目录 DefineMachine LearningSupervised Learning(监督学习)Regression problemClassidication Unspervised LearningClustering StudyModel representation(…...
centos7通过docker搭建nginx+php环境
以下环境都是基于centos7.9完成。 1.安装docker yum install docker-ce 说明:这一步,由于centos软件仓库没有收纳docker,需要自己去官网爬文档安装。 安装完成之后,就是启动docker服务以及添加到开机启动。 systemctl enable do…...
Node.js 学习笔记
小插件Template String Converter 当输入${}时,自动为其加上 反引号 一、node入门 node.js是什么 node的作用 开发服务器应用 开发工具类应用 开发桌面端应用 1.命令行工具 命令的结构 常用命令 切换到D盘——D: 查看D盘目录——dir 切换工作目录——c…...
RabbitMQ之发布确认高级
RabbitMQ之发布确认高级 一、发布确认 SpringBoot 版本1.1 确认机制方案1.2 代码架构图1.3 配置文件1.4 添加配置类1.5 消息生产者1.6 回调接口1.7 消息消费者1.8 结果分析 二、回退消息2.1 Mandatory 参数2.2 消息生产者代码2.3 回调接口2.4 结果分析 三、备份交换机3.1 代码架…...
lv5 嵌入式开发-10 信号机制(下)
目录 1 信号集、信号的阻塞 2 信号集操作函数 2.1 自定义信号集 2.2 清空信号集 2.3 全部置1 2.4 将一个信号添加到集合中 2.5 将一个信号从集合中移除 2.6 判断一个信号是否在集合中 2.7 设定对信号集内的信号的处理方式(阻塞或不阻塞) 2.8 使进程挂起(…...
【postgresql】 ERROR: multiple assignments to same column “XXX“
Cause: org.postgresql.util.PSQLException: ERROR: multiple assignments to same column "XXX"; bad SQL grammar []; nested exception is org.postgresql.util.PSQLException: ERROR: multiple assignments to same column "XXX"; 原因:or…...
一文读懂Llama 2(从原理到实战)
简介 Llama 2,是Meta AI正式发布的最新一代开源大模型。 Llama 2训练所用的token翻了一倍至2万亿,同时对于使用大模型最重要的上下文长度限制,Llama 2也翻了一倍。Llama 2包含了70亿、130亿和700亿参数的模型。Meta宣布将与微软Azure进行合…...
完整指南:如何使用 Node.js 复制文件
文件拷贝指的是将一个文件的数据复制到另一个文件中,使目标文件与源文件内容一致。Node.js 提供了文件系统模块 fs,通过该模块可以访问文件系统,实现文件操作,包括拷贝文件。 Node.js 中文件拷贝方法 在 Node.js 中,有…...
ElementUI - 主页面--动态树右侧内容管理
一.左侧动态树 1.定义组件 ①样式&数据处理 <template><el-menu class"el-menu-vertical-demo" background-color"#334157"text-color"#fff" active-text-color"#ffd04b" :collapse"collapsed" router :def…...
全国排名前三的直播公司无锋科技入驻天府蜂巢成都直播产业基地
最近,全国排名前三的直播公司——无锋科技,正式宣布入驻位于成都的天府蜂巢直播产业基地,这一消息引起了业内人士的高度关注。成都直播产业基地一直是中国直播产业的重要地标之一,其强大的技术和资源优势为众多直播公司提供了广阔…...
机器人中的数值优化|【五】BFGS算法非凸/非光滑处理
机器人中的数值优化|【五】BFGS算法的非凸/非光滑处理 往期内容回顾 机器人中的数值优化|【一】数值优化基础 机器人中的数值优化|【二】最速下降法,可行牛顿法的python实现,以Rosenbrock function为例 机器人中的数值优化|【三】无约束优化࿰…...
ESP32S3的MPU-6050组件移植教程
前言 (1)实习公司要搞ESP32BOX的驱动移植,所有资料自己找还是比较折磨人的现在我分享几个官方的组件移植资料: <1>Find the most exciting ESP-IDF components(ESP32的官方组件都可以在里面查,按照他…...
excel筛选后求和
需要对excel先筛选,后对“完成数量”进行求和。初始表格如下: 一、选中表内任意单元格,按ctrlshiftL,开启筛选 二、根据“部门”筛选,比如选择“一班” 筛选完毕后,选中上图单元格,然后按alt后&…...
pyspark 检测任务输出目录是否空,避免读取报错
前言 在跑调度任务时候,有时候子任务需要依赖前置任务的输出,但类似读取 Parquet 或者 Orc 文件时,如果不判断目录是否为空,在输出为空时会报错,所以需要 check 一下,此外Hadoop通常在写入数据时会在目录中…...
「网页开发|前端开发|Vue」10 vuex模块化:将数据划分成不同modules分别管理
本文主要介绍如何使用vuex的modules将状态数据根据不同模块进行划分并分别管理以及如何使用mapGetters快速将状态管理中的数据导入成local变量。 文章目录 本系列前文传送门一、场景说明二、使用modules划分不同模块三、使用Getters获取状态管理数据Getter传参mapGetters 辅助…...
苹果CMS插件-苹果CMS全套插件免费
网站内容的生成和管理对于网站所有者和内容创作者来说是一个挑战。有一些强大的工具可以帮助您轻松地解决这些问题。苹果CMS插件自动采集插件、采集发布插件以及采集伪原创发布插件,是这些工具之一。它们不仅可以极大地节省您的时间和精力,还可以提高您网…...
域环境介绍
一、概述 内网也指局域网,指的是某个区域由多台计算机互连而成的计算机组,范围通常在数千米以内,在局域网中,可以实现文件管理,应用软件共享,打印机共享、工作组内的日程安排、电子邮件和传真通信服务等&a…...
地球同步静止轨道上的中国卫星
3万6千公里地球同步静止轨道上的中国控制的卫星(包括香港属非国产平台卫星、外国属中国平台卫星),共80颗;截止到2023年8月3日,共有563颗在轨卫星。 号定位名称发射时间用途重量1141.1W中星1C(FH2C)2015.12.10DFH4平台…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...
MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...
