当前位置: 首页 > news >正文

【python】python实现杨辉三角的三种方法

文章目录

    • 1.杨辉三角介绍:
    • 2.方法一:迭代
    • 3.方法二:生成器
    • 4.方法三:递归

1.杨辉三角介绍:

杨辉三角是一种数学图形,由数字排列成类似三角形的形状。它的每个数值等于它上方两个数值之和。这个三角形的形状可以用一个二维表格来表示,其中每个位置上的数值都是通过前一行的数值计算得到的。在这个三角形中,第一行只有一个数值1,第二行有两个数值1,第三行有三个数值1,以此类推。从第四行开始,除了首尾的1之外,中间的数值是上一行对应位置的两个数值之和。 下面是一些杨辉三角常见的特点和应用:

  • 对称性:杨辉三角以中心轴为对称轴,每行的对称位置上的数值相等。
  • 组合数性质:杨辉三角中的数值可以表示为组合数,例如,第n行第k个数值表示为C(n-1, k-1),即从n-1个物体中选取k-1个的组合数。
  • 幂和性质:杨辉三角的每一行的数值之和都是2的幂,例如,第n行的数值之和为2^(n-1)。
  • 整数序列性质:杨辉三角的每一行对应着一个整数序列,如斐波那契数列、自然数序列等。

杨辉三角不仅仅是一个有趣的数学图形,还有许多实际应用。它在组合数学、概率论、代数等领域都有重要的应用,例如计算二项式的展开系数、解决概率分布问题、生成多项式系数等。
通过编程语言(如Python),可以实现杨辉三角并以可视化的方式显示出来。这样的程序可以逐行计算并输出杨辉三角的数值,从而更好地展示其规律和特点,并可用于相关计算和问题求解。
在这里插入图片描述

2.方法一:迭代

代码试例:

def triangle_1(x):""":param x: 需要生成的杨辉三角行数:return:"""triangle = [[1], [1, 1]] # 初始化杨辉三角n = 3 # 从第三行开始计数,逐行添加while n <= x:for i in range(0, n-1):if i == 0:# 添加初始列表[1,1],杨辉三角每行的首位和末位必为1triangle.append([1, 1])else:# 逐位计算,并插入初始列表中triangle[n-1].insert(i, triangle[n - 2][i] + triangle[n - 2][i - 1])n += 1return triangle
x = 11
triangle = triangle_1(x)# 遍历结果,逐行打印
for i in range(x):print(' '.join(str(triangle[i])).center(100)) # 转为str,居中显示

运行结果:
在这里插入图片描述

3.方法二:生成器

代码试例:

def triangle_2(n):""":param n: 需要生成的杨辉三角行数:return: """triangle = [1] # 初始化杨辉三角for i in range(n):yield triangletriangle.append(0) # 在最后一位加个0,用于计算下一行triangle = [triangle[i] + triangle[i - 1] for i in range(len(triangle))]
# 从生成器取值
for i in triangle_2(10):print(''.join(str(i)).center(100)) # 格式化输出

运行结果:
在这里插入图片描述

4.方法三:递归

杨辉三角特性:

【1,1】=【0,1】+【1,0】
【1,2,1】=【0,1,1】+【1,1,0】
【1,3,3,1】=【0,1,2,1】+【1,2,1,0】
【1,4,6,4,1】=【0,1,3,3,1】+【1,3,3,1,0】
第n行等于第n-1行分别首尾补0,然后按位相加

试例代码:

def triangle_3(n):""":param n:需要生成的杨辉三角行数:return:"""triangle = [1] # 初始化杨辉三角if n == 0:return trianglereturn [x+y for x, y in zip([0] + triangle_4(n - 1), triangle_4(n - 1) + [0])]
for i in range(10):print(''.join(str(triangle_4(i))).center(100))

运行结果:
在这里插入图片描述

到此这篇关于python实现杨辉三角的三种方法代码实例的文章就介绍到这了,如果本篇文章对你有帮助,记得点赞收藏+关注哦~

相关文章:

【python】python实现杨辉三角的三种方法

文章目录 1.杨辉三角介绍&#xff1a;2.方法一&#xff1a;迭代3.方法二&#xff1a;生成器4.方法三&#xff1a;递归 1.杨辉三角介绍&#xff1a; 杨辉三角是一种数学图形&#xff0c;由数字排列成类似三角形的形状。它的每个数值等于它上方两个数值之和。这个三角形的形状可以…...

GitHub 基本操作

最近要发展一下自己的 github 账号了&#xff0c;把以前的项目代码规整规整上传上去&#xff0c;这里总结了一些经验&#xff0c;经过数次实践之后&#xff0c;已解决几乎所有基本操作中的bug&#xff0c;根据下面的操作步骤来&#xff0c;绝对没错了。&#xff08;若有其他问题…...

Docker和Docker compose的安装使用指南

一&#xff0c;环境准备 Docker运行需要依赖jdk&#xff0c;所以需要先安装一下jdk yum install -y java-1.8.0-openjdk.x86_64 二&#xff0c;Docker安装和验证 1&#xff0c;安装依赖工具 yum install -y yum-utils 2&#xff0c;设置远程仓库 yum-config-manager --add-r…...

51单片机控制电动机正反转,PWM调速,记录转动圈数。

今天的实验需要用到的材料有&#xff1a;51单片机最小系统&#xff0c;4X4的矩阵键盘&#xff0c;DC直流6V-12V带编码器电机&#xff0c;L298N模块&#xff0c;一个led小灯。下面把产品截图展示一下&#xff1a; 单片机就不展示了&#xff0c;都一样&#xff0c;下面是接线图&a…...

JAVA学习(方法的定义和调用)

一、方法的定义和调用 1、关键词&#xff1a;static表示静态方法&#xff0c;如没有返回值使用void&#xff0c;方法名前使用类型&#xff0c;例如int、float等&#xff1b; /*** 测试方法的定义和调用*/public class TestMethod {public static void main(String[] args) {a…...

Linux(CentOS/Ubuntu)——安装nginx

如果确定你的系统是基于CentOS或RHEL&#xff0c;可以使用以下命令&#xff1a; ①、安装库文件 #安装gcc yum install gcc-c#安装PCRE pcre-devel yum install -y pcre pcre-devel#安装zlib yum install -y zlib zlib-devel#安装Open SSL yum install -y openssl openssl-de…...

26962-2011 高频电磁场综合水处理器技术条件

声明 本文是学习GB-T 26962-2011 高频电磁场综合水处理器技术条件. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本标准规定了高频电磁场综合水处理器(以下简称处理器)的术语和定义、分类和型号、结构型式、 要求及检验、标志、包装和贮运…...

图扑软件受邀亮相 IOTE 2023 国际物联网展

IOTE 2023 国际物联网展&#xff0c;作为全球物联网领域的盛会&#xff0c;于 9 月 20 日 - 22 日在中国深圳拉开帷幕。本届展会以“IoT构建数字经济底座”为主题&#xff0c;由深圳市物联网产业协会主办&#xff0c;打造当前物联网最新科技大秀。促进物联网与各行业深度融合&a…...

C语言文件操作与管理

一、为什么使用文件 在我们前面练习使用结构体时&#xff0c;写通讯录的程序&#xff0c;当通讯录运行起来的时候&#xff0c;可以给通讯录中增加、删除数据&#xff0c;此时数据是存放在内存中&#xff0c;当程序退出的时候&#xff0c;通讯录中的数据自然就不存在了&#xff…...

蓝桥等考Python组别八级005

第一部分&#xff1a;选择题 1、Python L8 &#xff08;15分&#xff09; 运行下面程序&#xff0c;输出的结果是&#xff08; &#xff09;。 i 1 while i < 4: print(i, end ) i 1 1 2 30 1 2 31 2 3 40 1 2 3 4 正确答案&#xff1a;C 2、Python L8 &#…...

JUnit介绍

JUnit是用于编写和运行可重复的自动化测试的开源测试框架&#xff0c; 这样可以保证我们的代码按预期工作。JUnit可广泛用于工业和作为支架(从命令行)或IDE(如Eclipse)内单独的Java程序。 JUnit提供&#xff1a; 断言测试预期结果。 测试功能共享通用的测试数据。 测试套件轻…...

(高阶) Redis 7 第16讲 预热/雪崩/击穿/穿透 缓存篇

面试题 什么是缓存预热/雪崩/击穿/穿透如何做缓存预热如何避免或减少缓存雪崩穿透和击穿的区别?穿透和击穿的解决方案出现缓存不一致时,有哪些修补方案缓存预热 理论 将需要的数据提前加载到缓存中,不需要用户使用的过程中进行数据回写。(比如秒杀活动数据等) 方案 1.…...

(三) gitblit管理员手册

(一)gitblit安装教程 (二) gitblit用户使用教程 (三) gitblit管理员手册 目录 权限管理创建仓库时创建用户普通用户 管理员用户访问限制和访问权限仓库创建权限分配 Teams普通组管理员组 参考资料 权限管理 创建仓库时 选择指定的人员查看,克隆,推送 不允许fork 对应Anonymo…...

ESKF算法融合GNSS与IMU信息,航向角的偏差是如何逐渐影响到重力加速度g以及位置偏差的 CSDN gpt

1##############################ESKF算法融合GNSS与IMU信息,航向角的偏差是如何逐渐影响到重力加速度g以及位置偏差的 CSDN gpt 航向角的偏差会逐渐影响重力加速度和位置偏差。首先&#xff0c;航向角的偏差会影响重力加速度的测量值。在ESKF算法中&#xff0c;通过将IMU测…...

Java初始化大量数据到Neo4j中(二)

接Java初始化大量数据到Neo4j中(一)继续探索&#xff0c;之前用create命令导入大量数据发现太过耗时&#xff0c;查阅资料说大量数据初始化到Neo4j需要使用neo4j-admin import 业务数据说明可以参加Java初始化大量数据到Neo4j中(一)&#xff0c;这里主要是将处理好的节点数据和…...

flink1.17安装

Flink1.17安装 官网地址&#xff1a; https://nightlies.apache.org/flink/flink-docs-release-1.17/zh//docs/try-flink/local_installation/ 安装jdk11 ps&#xff1a;只能安装openjdk11&#xff0c;昨天安装的oracle jdk17&#xff0c;结果怎么也运行不起来。 sudo apt …...

SLAM从入门到精通(gmapping建图)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 前面我们介绍了hector slam建图。相对而言&#xff0c;hector slam建图对数据的要求比较低&#xff0c;只需要lidar数据就可以建图了。但是hector …...

中国312个历史文化名镇及景区空间点位数据集

一部中华史&#xff0c;既是人类创造丰富物质财富的奋头史&#xff0c;又是与自然共生共存的和谐史不仅留存下悠久丰富的人文思想和情怀&#xff0c;还在各处镌刻下可流传的生活场景&#xff0c;历史文化名镇(以下简称:名镇)就是这样真实的历史画卷。“镇”是一方的政治文化中心…...

记一次Mybatis驼峰命名导致的线上BUG及处理方案

前言 方向从一开始就错了&#xff0c;还是执着的去寻找问题的解决方案&#xff0c;简直就是一场重大灾难&#xff0c;但这也是每个修行者的必由之路。这个线上问题&#xff0c;差点让我的心里防线崩溃&#xff0c;苦寻无门&#xff0c;最终得以解决也多亏了身边的各路大佬的群…...

在MyBatisPlus中添加分页插件

开发过程中&#xff0c;数据量大的时候&#xff0c;查询效率会有所下降&#xff0c;这时&#xff0c;我们往往会使用分页。 具体操作入下&#xff1a; 1、添加分页插件&#xff1a; package com.zhang.config;import com.baomidou.mybatisplus.extension.plugins.Pagination…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...