当前位置: 首页 > news >正文

【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(2,常见的二维随机变量及二维变量的条件分布和独立性)

文章目录

  • 引言
  • 四、常见的二维随机变量
    • 4.1 二维均匀分布
    • 4.2 二维正态分布
  • 五、二维随机变量的条件分布
    • 5.1 二维离散型随机变量的条件分布律
    • 5.2 二维连续型随机变量的条件分布
  • 六、随机变量的独立性
    • 6.1 基本概念
    • 6.2 随机变量独立的等价条件
  • 写在最后


引言

有了上文关于二维随机变量的基本概念与性质后,我们可以往后继续学习更加深入的内容。


四、常见的二维随机变量

4.1 二维均匀分布

( X , Y ) (X,Y) (X,Y) 为二维随机变量, D D D x O y xOy xOy 平面的有限区域,其面积为 A A A ,若 ( X , Y ) (X,Y) (X,Y) 的联合密度函数为 f ( x , y ) = { 1 A , ( x , y ) ∈ D 0 , ( x , y ) ∉ D , f(x,y)=\begin{cases} \frac{1}{A} ,&(x,y)\in D \\ 0,&(x,y) \notin D \end{cases}, f(x,y)={A1,0,(x,y)D(x,y)/D, ( X , Y ) (X,Y) (X,Y) 为区域 D D D 上的服从均匀分布。

可以回想一下一维的均匀分布,它是长度的倒数。

4.2 二维正态分布

这个我就不手敲了,太长啦,根本记不住。

在这里插入图片描述
其中, ρ \rho ρ 为两个随机变量的相关系数。

( X , Y ) ∼ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ ) (X,Y)\sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho) (X,Y)N(μ1,μ2;σ12,σ22;ρ) ,则 X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) . X \sim N(\mu_1,\sigma_1^2),Y \sim N(\mu_2,\sigma_2^2). XN(μ1,σ12),YN(μ2,σ22). a 2 + b 2 ≠ 0 a^2+b^2 \ne 0 a2+b2=0 时,有 a X + b Y aX+bY aX+bY 服从一维正态分布。随机变量 X X X Y Y Y 独立的充要条件是两个变量不相关,即 ρ ≠ 0 \rho \ne 0 ρ=0


五、二维随机变量的条件分布

5.1 二维离散型随机变量的条件分布律

( X , Y ) (X,Y) (X,Y) 为二维离散型随机变量,其联合分布律为 P { X = x i , Y = y j } = p i j ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) . P\{X=x_i,Y=y_j\}=p_{ij}(i=1,2,\cdots,m;j=1,2,\cdots,n). P{X=xi,Y=yj}=pij(i=1,2,,m;j=1,2,,n). (1)对某个固定的 i i i ,若 P { X = x i } > 0 P\{X=x_i\}>0 P{X=xi}>0 ,则称 P { Y = y j ∣ X = x i } = P { X = x i , Y = y j } P { X = x i } = p i j p i ⋅ ( j = 1 , 2 , ⋯ , n ) P\{Y=y_j | X=x_i\}=\frac{P\{X=x_i,Y=y_j\}}{P\{X=x_i\}}=\frac{p_{ij}}{p_{i\cdot}}(j=1,2,\cdots,n) P{Y=yjX=xi}=P{X=xi}P{X=xi,Y=yj}=pipij(j=1,2,,n) 为在 X = x i X=x_i X=xi 条件下随机变量 Y Y Y 的条件分布律。

(2)对某个固定的 j j j ,若 P { Y = y j } > 0 P\{Y=y_j\}>0 P{Y=yj}>0 ,则称 P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } = p i j p ⋅ j ( i = 1 , 2 , ⋯ , m ) P\{X=x_i | Y=y_j\}=\frac{P\{X=x_i,Y=y_j\}}{P\{Y=y_j\}}=\frac{p_{ij}}{p_{\cdot j}}(i=1,2,\cdots,m) P{X=xiY=yj}=P{Y=yj}P{X=xi,Y=yj}=pjpij(i=1,2,,m) 为在 Y = y i Y=y_i Y=yi 条件下随机变量 X X X 的条件分布律。

5.2 二维连续型随机变量的条件分布

( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量,联合密度函数为 f ( x , y ) f(x,y) f(x,y) ,变量 X , Y X,Y X,Y 的边缘密度函数分别为 f X ( x ) , f Y ( y ) . f_X(x),f_Y(y). fX(x),fY(y).

对固定的 X = x X=x X=x ,若 f X ( x ) > 0 f_X(x)>0 fX(x)>0 ,称 P { Y ≤ y ∣ X = x } = ∫ − ∞ y f ( x , y ) f X ( x ) d y P\{Y\leq y | X=x\}=\int_{-\infty}^y\frac{f(x,y)}{f_X(x)}dy P{YyX=x}=yfX(x)f(x,y)dy 为在 X = x X=x X=x 条件下 Y Y Y 的条件分布函数, f ( x , y ) f X ( x ) \frac{f(x,y)}{f_X(x)} fX(x)f(x,y) 为条件密度函数。对于固定的 Y = y Y=y Y=y ,可同理得到类似结论。

我看老汤也没给证明,自己也没想明白为什么,就上网搜了下,发现是做了近似处理。

在这里插入图片描述


六、随机变量的独立性

6.1 基本概念

A , B A,B A,B 为两个随机事件,若 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) ,称事件 A , B A,B A,B 独立;设 ( X , Y ) (X,Y) (X,Y) 为二维随机变量,令 { X ≤ x } = A , { Y ≤ y } = B \{X\leq x\}=A,\{Y\leq y\}=B {Xx}=A,{Yy}=B ,则 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) 等价于 F ( x , y ) = P { X ≤ x , Y ≤ y } = P { X ≤ x } P { Y ≤ y } = F X ( x ) F Y ( y ) . F(x,y)=P\{X\leq x,Y\leq y\}=P\{X\leq x\}P\{Y\leq y\}=F_X(x)F_Y(y). F(x,y)=P{Xx,Yy}=P{Xx}P{Yy}=FX(x)FY(y). 于是有如下定义:

( X , Y ) (X,Y) (X,Y) 为二维随机变量, F ( x , y ) F(x,y) F(x,y) 为其联合分布函数, F X ( x ) , F Y ( y ) F_X(x),F_Y(y) FX(x),FY(y) 分别为 X , Y X,Y X,Y 的边缘分布函数,若 F ( x , y ) = F X ( x ) = F Y ( y ) F(x,y)=F_X(x)=F_Y(y) F(x,y)=FX(x)=FY(y) ,称变量 X , Y X,Y X,Y 相互独立。同理可扩展到 n n n 维。

6.2 随机变量独立的等价条件

在这里插入图片描述
( X 1 , X 2 . ⋯ , X m ) (X_1,X_2.\cdots,X_m) (X1,X2.,Xm) ( Y 1 , Y 2 , ⋯ , Y n ) (Y_1,Y_2,\cdots,Y_n) (Y1,Y2,,Yn) 相互独立,则由 ( X 1 , X 2 . ⋯ , X m ) (X_1,X_2.\cdots,X_m) (X1,X2.,Xm) 构成的函数 φ ( X 1 , X 2 . ⋯ , X m ) \varphi(X_1,X_2.\cdots,X_m) φ(X1,X2.,Xm) ( Y 1 , Y 2 , ⋯ , Y n ) (Y_1,Y_2,\cdots,Y_n) (Y1,Y2,,Yn) 构成的函数 φ ( Y 1 , Y 2 , ⋯ , Y n ) \varphi(Y_1,Y_2,\cdots,Y_n) φ(Y1,Y2,,Yn) 相互独立。


写在最后

其实如果一维的能掌握好一些,二维的可以类比来学,下一篇来说说二维随机变量的最后一个内容 —— 二维随机变量函数的分布。

相关文章:

【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(2,常见的二维随机变量及二维变量的条件分布和独立性)

文章目录 引言四、常见的二维随机变量4.1 二维均匀分布4.2 二维正态分布 五、二维随机变量的条件分布5.1 二维离散型随机变量的条件分布律5.2 二维连续型随机变量的条件分布 六、随机变量的独立性6.1 基本概念6.2 随机变量独立的等价条件 写在最后 引言 有了上文关于二维随机变…...

力扣 -- 10. 正则表达式匹配

解题步骤&#xff1a; 参考代码&#xff1a; class Solution { public:bool isMatch(string s, string p) {int ms.size();int np.size();//处理后续映射关系s s;//处理后续映射关系p p;vector<vector<bool>> dp(m1,vector<bool>(n1));//初始化dp[0][0]true…...

Spring源码分析(四) Aop全流程

一、Spring AOP基础概念 1、基础概念 连接点(Join point)&#xff1a;能够被拦截的地方&#xff0c;Spring AOP 是基于动态代理的&#xff0c;所以是方法拦截的&#xff0c;每个成员方法都可以称之为连接点&#xff1b;切点(Poincut)&#xff1a;每个方法都可以称之为连接点&…...

定义现代化实时数据仓库,SelectDB 全新产品形态全面发布

导读&#xff1a;9 月 25 日&#xff0c;2023 飞轮科技产品发布会在线上正式召开&#xff0c;本次产品发布会以 “新内核、新图景” 为主题&#xff0c;飞轮科技 CEO 马如悦全面解析了现代化数据仓库的演进趋势&#xff0c;宣布立足于多云之上的 SelectDB Cloud 云服务全面开放…...

Linux系统编程(七):线程同步

参考引用 UNIX 环境高级编程 (第3版)黑马程序员-Linux 系统编程 1. 同步概念 所谓同步&#xff0c;即同时起步、协调一致。不同的对象&#xff0c;对 “同步” 的理解方式略有不同 设备同步&#xff0c;是指在两个设备之间规定一个共同的时间参考数据库同步&#xff0c;是指让…...

Arcgis克里金插值报错:ERROR 999999: 执行函数时出错。 表名无效。 空间参考不存在。 ERROR 010429: GRID IO 中存在错误

ERROR 999999: 执行函数时出错。 问题描述 表名无效。 空间参考不存在。 ERROR 010429: GRID IO 中存在错误: WindowSetLyr: Window cell size does not match layer cell size. name: c:\users\lenovo\appdata\local\temp\arc2f89\t_t164, adepth: 32, type: 1, iomode: 6, …...

【网络协议】ARP协议

为什么网络需要同时借助MAC地址这种物理地址和IP地址这种逻辑地址进行通信&#xff1f; 尽管目前MAC地址可以通过逻辑的方式进行修改&#xff0c;但它最初是被设计为不可人为更改的硬件地址。虽然MAC地址也可以满足唯一性的要求&#xff0c;但由于它不可由管理员根据需求通过逻…...

安防视频/集中云存储平台EasyCVR(V3.3)部分通道显示离线该如何解决?

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…...

软件测试经典面试题:如何进行支付功能的测试?

非现金支付时代&#xff0c;非现金支付已经成为了生活不可或缺的一部分&#xff0c;我们只需要一台手机便可走遍全国各地&#xff08;前提是支付宝&#xff0c;微信有钱<00>&#xff09;,那么作为测试人员&#xff0c;支付测试也是非常重要的一环&#xff0c;那么下面我就…...

SolidWorks 入门笔记03:生成工程图和一键标注

默认情况下&#xff0c;SOLIDWORKS系统在工程图和零件或装配体三维模型之间提供全相关的功能&#xff0c;全相关意味着无论什么时候修改零件或装配体的三维模型&#xff0c;所有相关的工程视图将自动更新&#xff0c;以反映零件或装配体的形状和尺寸变化&#xff1b;反之&#…...

【Java】对象内存图多个对象同一内存地址

目录 学生类 单个对象内存图 多个对象指向同一个内存地址 学生类 Student.java如下&#xff1a; package com.面向对象;public class Student {String name;int age;public void work() {System.out.println("开始敲代码...");} }StudentDemo.java如下&#xff…...

Python 笔记05(装饰器的使用)

一 装饰器的使用 (property) property 是 Python 中用于创建属性的装饰器。它的作用是将一个类方法转换为类属性&#xff0c;从而可以像 访问属性一样访问该方法&#xff0c;而不需要使用函数调用的语法。使用 property 主要有以下好处&#xff1a; 封装性和隐藏实现细节&…...

记忆化搜索,901. 滑雪

901. 滑雪 - AcWing题库 给定一个 R 行 C 列的矩阵&#xff0c;表示一个矩形网格滑雪场。 矩阵中第 i行第 j 列的点表示滑雪场的第 i 行第 j列区域的高度。 一个人从滑雪场中的某个区域内出发&#xff0c;每次可以向上下左右任意一个方向滑动一个单位距离。 当然&#xff0…...

计算机网络:连接世界的纽带

计算机网络的基础概念 计算机网络是一组相互连接的计算机&#xff0c;它们通过通信链路和协议进行数据交换和资源共享。以下是一些关键概念&#xff1a; 1. 节点和主机 网络中的计算机设备称为节点&#xff0c;通常是主机或服务器。主机是普通用户或终端设备&#xff0c;而服…...

SpringMVC 学习(三)注解开发

4. 注解开发 4.1 环境搭建 (1) 新建 maven 模块 springmvc-03-annotation (2) 确认依赖 确认方法同 3(2)&#xff0c;手动导入发布依赖见3(11) <!--资源过滤--> <build><resources><resource><directory>src/main/java</directory>&…...

0x84加密数据传输服务

为了在安全模式下实现一些诊断服务&#xff0c;在服务端和客户端应用程序之间添加了Security sub-layer。在客户端与服务端之间进行诊断服务数据传输有两种方法&#xff1a; 1、非安全模式下数据传输   应用程序使用诊断服务(diagnostic Services)和应用层服务原语(Applicati…...

Vue.js快速入门:构建现代Web应用

Vue Vue.js是一款流行的JavaScript框架&#xff0c;用于构建现代的、交互式的Web应用程序。它具有简单易学的特点&#xff0c;同时也非常强大&#xff0c;能够帮助开发者构建高效、可维护的前端应用。本篇博客将带你快速入门Vue.js&#xff0c;并演示如何构建一个简单的Vue应用…...

Scala第五章节

Scala第五章节 scala总目录 章节目标 掌握方法的格式和用法掌握函数的格式和用法掌握九九乘法表案例 1. 方法 1.1 概述 实际开发中, 我们需要编写大量的逻辑代码, 这就势必会涉及到重复的需求. 例如: 求10和20的最大值, 求11和22的最大值, 像这样的需求, 用来进行比较的逻…...

erlang练习题(三)

题目一 查询列表A是否为列表B的前缀 解答 isPrefix([], List2) -> io:format("A is prefix of B ~n");isPrefix([H1 | ListA], [H2 | ListB]) ->case H1 H2 oftrue -> isPrefix(ListA, ListB);false -> io:format("A is not prefix of B ~n&quo…...

What Is A DNS Amplification DDoS Attack?

什么是 DNS 放大攻击&#xff1f; 域名系统 &#xff08;DNS&#xff09; 是用于在网站的机器可读地址&#xff08;例如 191.168.0.1&#xff1a;80&#xff09;和人类可读名称&#xff08;例如 radware.com&#xff09;之间进行解析的目录在 DNS 放大攻击中&#xff0c;攻击者…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...