当前位置: 首页 > news >正文

Sentinel学习(2)——sentinel的使用,引入依赖和配置 对消费者进行流控 对生产者进行熔断降级

前言

Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件,主要以流量为切入点,从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。

本篇博客介绍sentinel的使用,引入依赖和配置,结合案例阐述sentinel对消费者进行流控以及对生产者进行熔断降级。

其他关于sentinel的文章如下:

Sentinel学习(1)——CAP理论,微服务中的雪崩问题,和Hystix的解决方案 & Sentinel的相关概念 + 下载运行

在这里插入图片描述

目录

  • 前言
  • 引出
  • 一、sentinel的使用准备
    • 1.上下文和资源
    • 2.责任的划分
    • 3,引入依赖和配置
  • 二、对消费者进行流量控制
    • 1.单机阈值
    • 2.预热设置
    • 3.排队等待
    • 4.关联模式
      • 补充:自定义限流异常返回
    • 5.链路模式
  • 三、对生产者进行熔断降级
    • 1.异常数
    • 2.异常比例
    • 3.慢调用比例
  • 总结

引出


1.sentinel的使用,引入依赖和配置;
2.对消费者进行流控;
3.对生产者进行熔断降级;

一、sentinel的使用准备

1.上下文和资源

上下文( Context )和 context-name
Context 代表调用链路上下文。是一个根节点,在整个调用链路的开始处,Sentinel 会创建上下文Context 对象,并且为它指定一个 name ,相当于根资源。在 Sentinel 中,不同的调用链路可能使用同一个上下文 Context 对象(共一个根节点)。在这里( 和 Spring MVC 整合 ),我们的调用链路都是在 sentinel_spring_web_context 中:

在这里插入图片描述

资源(Resource)和 resource-name
在 Sentinel 中,对于每一份资源,Sentinel 会为赋予一个 name(或者你手动指定),和 Spring MVC整合时,Sentinel 使用的是 URI 来作为 Controller 方法的资源名( 在这里,Controller 方法就是资源)

在这里插入图片描述

2.责任的划分

对于消费者而言,进行流量控制,别人访问我,我怕自己失败,所以我要限制别人访问我的流量;

对于生产者而言,进行熔断降级,消费者调用生产者,怕生产者出问题,所以进行熔断降级,如果被调用方,即生产者出问题时,给出相应的应对;

在这里插入图片描述

3,引入依赖和配置

        <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-openfeign</artifactId><version>2.2.6.RELEASE</version></dependency><dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-sentinel</artifactId></dependency>
spring:cloud:# nacos的配置nacos:discovery:# 能够注册register-enabled: trueserver-addr: http://192.168.111.130:8848/# 命名空间namespace: my-tianju# 组名group: DEV# sentinel的配置sentinel:transport:dashboard: 192.168.111.130:7777port: 8719# 这样一启动能够立马被发现,不用请求一次后才被监控eager: true# 链路相关的配置# 默认是true,开启上下文整合,所有链路在根节点下,链路监控就是将请求分开统计web-context-unify: falseapplication:name: springCloud-consumer#feign:
#  hystrix:
#    enable: true# 打开阿里的 sentinel
feign:sentinel:enabled: true

二、对消费者进行流量控制

QPS(Queries Per Second) 表示每秒的查询数。也就是一台服务器每秒能够响应的查询次数。

1.单机阈值

QPS(Queries Per Second) 表示每秒的查询数。也就是一台服务器每秒能够响应的查询次数。

在这里插入图片描述

请求次数过多,被sentinel限流

在这里插入图片描述

2.预热设置

在系统刚启动时,允许较少的请求,随着系统逐步稳定,提升访问允许的阈值

在这里插入图片描述

JMeter测试post请求,需要加一下请求头参数

在这里插入图片描述

Ramp-up时间:线程启动的间隔时间,如果100个线程10s内启动完成,则设置Ramp-up为100/10=10s

在这里插入图片描述

波形图

在这里插入图片描述

全流程解析:
1.开始的时候每秒允许3次;
2.前10s内逐步提升;
3.在10s后达到稳定值,每秒允许10次;

在这里插入图片描述

3.排队等待

排队等待:也叫流量整形,它让请求以均匀的速度通过,单机阈值为每秒通过数量,其余的在队列排队等待一段时间,(即我们设置的时间,单位是毫秒),没有超过这个时间都能被及时处理,如果超过了这个等待时间针对请求的接口没有线程来处理,则抛出异常

在这里插入图片描述

JMeter参数设置

在这里插入图片描述

波形图

在这里插入图片描述

限流策略流程:
1.每秒允许10个
2.发过来50个,通过10个剩余的40个进入队列等待:
3.在没有请求的时候,通过队列中等待的请求,

在这里插入图片描述

4.关联模式

关联:/important接口的重要程度要高于 /normal接口,如果,/important接口的访问压力很大,那么,可以『牺牲』掉 /normal` 接口,全力保证 /important 接口的正常运行

在这里插入图片描述

JMeter参数设置

在这里插入图片描述

线程数设置

在这里插入图片描述

add成功,get被限流

在这里插入图片描述

高并发情况,add接口没有出现失效

在这里插入图片描述

补充:自定义限流异常返回

Sentinel 返回的默认信息是 Blocked by Sentinel (flow limiting),如果你对默认响应信息不满意,你可以自定义限流返回信息。

Sentinel 提供了 BlockExceptionHandler 接口。不管什么原因触发了 Sentinel 阻断用户的正常请求,Sentinel 都将『进入』到用户自定义的 BlockExceptionHandler 接口的实现类中,执行 handle方法,并传入当前的请求、响应对象以及异常对象,并以 handle 方法的执行结果作为返回,回传给用户。

package com.tianju.test;import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.BlockExceptionHandler;
import com.alibaba.csp.sentinel.slots.block.BlockException;
import com.alibaba.csp.sentinel.slots.block.degrade.DegradeException;
import com.alibaba.csp.sentinel.slots.block.flow.FlowException;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.stereotype.Component;import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;@Component
public class MyBlockExceptionHandler implements BlockExceptionHandler {@Overridepublic void handle(HttpServletRequest request, HttpServletResponse response,BlockException ex) throws Exception {String msg = null;if (ex instanceof FlowException) {msg = "该请求限流了,请稍后重试";} else if (ex instanceof DegradeException) {msg = "被熔断了";} else {msg = "其它原因";// ParamFlowException "热点参数限流";// SystemBlockException "系统规则(负载/...不满足要求)";// AuthorityException "授权规则不通过";}// http 状态码response.setStatus(500);response.setCharacterEncoding("utf-8");response.setHeader("Content-Type", "application/json;charset=utf-8");response.setContentType("application/json;charset=utf-8");new ObjectMapper().writeValue(response.getWriter(), msg);}
}

需要说明的是:不仅仅是因为限流和熔断这一个原因会导致 BlockExceptionhandler 的handle 方法的执行,还有其它的原因也会调用这个handler方法,因此,需要对 handle 方法的BlockException 参数对象进行 instanceof 判断

5.链路模式

链路限流和关联限流的思路很像,假设我们要去请求某个微服务,该微服务有2个接口(/query和/add),而这两个接口又调用了同一个service层的方法(如:doSomething()方法),那么,我们可以『站在 doSomething的方法』的角度上进行设置:如果是 /query接口在调用service层的doSomething方法,那么就进行限流,而 /add接口的调用就不限流,或设置为更宽松一些的流控

通过配置关闭 sentinel 的 URL 收敛功能

在这里插入图片描述

package com.tianju.consumer.service;import com.alibaba.csp.sentinel.annotation.SentinelResource;
import org.springframework.stereotype.Service;@Service
public class ConsumerService {@SentinelResource("hello")public String hello(){return "consumerService";}
}

在这里插入图片描述

链路模式,站在service层的方法的角度上

在这里插入图片描述

高并发add接口,没有失效

在这里插入图片描述

快速点击get方法,出现失效情况

在这里插入图片描述

三、对生产者进行熔断降级

熔断器3个状态:

  • Closed:关闭状态,所有请求都正常访问。

  • Open:打开状态,所有请求都会被降级。

    Hystrix会对请求情况计数,当一定时间内失败请求百分比达到阈值,则触发熔断,断路器会完全打开。默认失败比例的阈值是50%,请求次数最少不低于20次。默认是 五秒之内请求20次 如果有10次失败(50%),则请求不能正常访问。

  • Half Open:半开状态,open状态不是永久的,打开后会进入休眠时间(默认是5S)。随后断路器会自动进入半开状态。

    此时会释放部分请求通过,若这些请求都是健康的,则会完全关闭断路器,否则继续保持打开,再次进行休眠计时

在这里插入图片描述

1.异常数

如下配置:一秒内发送2次请求,如果有1次失败(异常),则直接熔断,然后降级

在这里插入图片描述

设置参数

在这里插入图片描述

在这里插入图片描述

2.异常比例

在这里插入图片描述

设置fallback方法

在这里插入图片描述

package com.tianju.config;import com.tianju.common.dto.StorageDto;
import com.tianju.common.result.HttpResp;
import com.tianju.config.fallback.StorageFeignFallback;
import com.tianju.entity.Order;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;@FeignClient(value = "storage-server",fallback = StorageFeignFallback.class)
public interface StorageFeign {@PostMapping("/storage/sub")HttpResp subStorage(@RequestBody StorageDto storageDto);}

openfeign设置fallback方法

在这里插入图片描述

package com.tianju.config;import com.tianju.common.dto.StorageDto;
import com.tianju.common.result.HttpResp;
import com.tianju.config.fallback.StorageFeignFallback;
import com.tianju.entity.Order;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;@FeignClient(value = "storage-server",fallback = StorageFeignFallback.class)
public interface StorageFeign {@PostMapping("/storage/sub")HttpResp subStorage(@RequestBody StorageDto storageDto);
}

生产者出现异常情况

在这里插入图片描述

用postman进行测试

在这里插入图片描述

package com.tianju.config.fallback;import com.tianju.common.dto.StorageDto;
import com.tianju.common.result.HttpResp;
import com.tianju.config.StorageFeign;
import lombok.extern.slf4j.Slf4j;
import org.springframework.stereotype.Component;/*** 调用库存的feign异常时的返回*/
@Component
@Slf4j
public class StorageFeignFallback implements StorageFeign {@Overridepublic HttpResp subStorage(StorageDto storageDto) {System.out.println("#########################进入了减库存方法的异常中....###########################");log.debug("进入了减库存方法的异常中....");return HttpResp.failed("减库存的openFeign调用失效,请稍后重试");}
}

在这里插入图片描述

package com.tianju.config.fallback;import com.tianju.common.dto.StorageDto;
import com.tianju.common.result.HttpResp;
import com.tianju.config.StorageFeign;
import lombok.extern.slf4j.Slf4j;
import org.springframework.stereotype.Component;/*** 调用库存的feign异常时的返回*/
@Component
@Slf4j
public class StorageFeignFallback implements StorageFeign {@Overridepublic HttpResp subStorage(StorageDto storageDto) {System.out.println("#########################进入了减库存方法的异常中....###########################");log.debug("进入了减库存方法的异常中....");return HttpResp.failed("减库存的openFeign调用失效,请稍后重试");}
}

3.慢调用比例

如下配置:在一秒内,发5次请求,如果每次请求的响应时间超过500毫秒,这种比例达到0.5(50%),就进行熔断,熔断时长就是10秒。如:1秒内有5次请求,其中有3次请求响应时间超过了500毫秒,那么这个比例就是60%,大于50%,此时就熔断,然后降级。

在这里插入图片描述

用Jmeter测试,程序中当id=1时,每次响应都是800毫秒。所以每次的请求都大于500毫秒,失败率100%,这个时候去请求id=4的资源也是无法请求的,因为熔断了,所以也是直接降级。10s后再次请求id=4的就正常了。


总结

1.sentinel的使用,引入依赖和配置;
2.对消费者进行流控;
3.对生产者进行熔断降级;

相关文章:

Sentinel学习(2)——sentinel的使用,引入依赖和配置 对消费者进行流控 对生产者进行熔断降级

前言 Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件&#xff0c;主要以流量为切入点&#xff0c;从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。 本篇博客介绍sentinel的使用&#x…...

springboot 简单配置mongodb多数据源

准备工作&#xff1a; 本地mongodb一个创建两个数据库 student 和 student-two 所需jar包&#xff1a; # springboot基于的版本 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId>&l…...

西门子S7-1200使用LRCF通信库与安川机器人进行EthernetIP通信的具体方法示例

西门子S7-1200使用LRCF通信库与安川机器人进行EthernetIP通信的具体方法示例 准备条件: PLC:S7-1200 1214C DC/DC/DC 系统版本4.5及以上。 机器人控制柜:安川YRC1000。 软件:TIA V17 PLC做主站,机器人做从站。 具体方法可参考以下内容: 使用的库文件为西门子 1200系列…...

pytorch第一天(tensor数据和csv数据的预处理)lm老师版

tensor数据&#xff1a; import torch import numpyx torch.arange(12) print(x) print(x.shape) print(x.numel())X x.reshape(3, 4) print(X)zeros torch.zeros((2, 3, 4)) print(zeros)ones torch.ones((2,3,4)) print(ones)randon torch.randn(3,4) print(randon)a …...

CSP-J第二轮试题-2021年-1.2题

文章目录 参考&#xff1a;总结 [CSP-J 2021] 分糖果题目背景题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 样例 #2样例输入 #2样例输出 #2 样例 #3样例输入 #3样例输出 #3 提示答案1答案2-优化 [CSP-J 2021] 插入排序题目描述输入格式输出格式样例 #1样例输入 #1样…...

怒刷LeetCode的第16天(Java版)

目录 第一题 题目来源 题目内容 解决方法 方法一&#xff1a;迭代 方法二&#xff1a;模拟 方法三&#xff1a;循环模拟 方法四&#xff1a;传递 第二题 题目来源 题目内容 解决方法 方法一&#xff1a;回溯 方法二&#xff1a;枚举优化 第三题 题目来源 题目…...

让大脑自由

前言 作者写这本书的目的是什么&#xff1f; 教会我们如何让大脑更好地为自己工作。 1 大脑的运行机制是怎样的&#xff1f; 大脑的基本运行机制是神经元之间通过突触传递信息&#xff0c;神经元的兴奋和抑制状态决定了神经网络的运行和信息处理&#xff0c;神经网络可以通过…...

Arcgis克里金插值报错:ERROR 010079: 无法估算半变异函数。 执行(Kriging)失败。

Arcgis克里金插值报错&#xff1a;ERROR 010079: 无法估算半变异函数。 执行(Kriging)失败。 问题描述&#xff1a; 原因&#xff1a; shape文件的问题&#xff0c;此图可以看出&#xff0c;待插值的点有好几个都超出了地理范围之外&#xff0c;这个不知道是坐标系配准的问…...

Docker Compose安装

title: “Docker Compose安装” createTime: 2022-01-04T19:08:1508:00 updateTime: 2022-01-04T19:08:1508:00 draft: false author: “name” tags: [“docker”,“docker-compose”] categories: [“install”] description: “测试的” docker-compose安装步骤 1.下载 u…...

机器人过程自动化(RPA)入门 7. 处理用户事件和助手机器人

在UiPath中,有两种类型的Robot用于自动化任何流程。一个是后台机器人,它在后台工作。它独立工作,这意味着它不需要用户的输入或任何用户交互。另一个是前台机器人,也被称为助理机器人。 本章介绍前台机器人。在这里,我们将了解自动化过程中通过简单按键、单击鼠标等触发事…...

在linux下预览markdown的方法,转换成html和pdf

背景 markdown是一种便于编写和版本控制的格式&#xff0c;但却不便于预览——特别是包含表格等复杂内容时&#xff0c;单纯的语法高亮是远远不够的——这样就不能边预览边调整内容&#xff0c;需要找到一种预览方法。 思路 linux下有个工具&#xff0c;叫pandoc&#xff0c…...

AIOT入门指南:探索人工智能与物联网的交汇点

AIOT入门指南&#xff1a;探索人工智能与物联网的交汇点 1. 引言 随着技术的快速发展&#xff0c;人工智能&#xff08;AI&#xff09;和物联网&#xff08;IoT&#xff09;已经成为当今最热门的技术领域。当这两个领域交汇时&#xff0c;我们得到了AIOT - 一个结合了AI的智能…...

CCC数字钥匙设计【NFC】 --车主配对流程介绍

1、车主配对流程介绍 车主配对流程可以通过车内NFC进行&#xff0c;若支持UWB测距&#xff0c;也可以通过蓝牙/UWB进行&#xff0c;本文主要介绍通过NFC进行车主配对的流程。 整个配对流程相对较为复杂&#xff0c;本文主要梳理整体的步骤流程&#xff0c;其中的每个细节流程未…...

一站式开源持续测试平台 MerterSphere 之测试跟踪操作详解

一、MeterSphere平台介绍 MeterSphere是一站式的开源持续测试平台&#xff0c;遵循 GPL v3 开源许可协议&#xff0c;涵盖测试跟踪、接口测试、UI 测试和性能测试等功能&#xff0c;全面兼容JMeter、Selenium 等主流开源标准&#xff0c;有效助力开发和测试团队充分利用云弹性进…...

自然语言处理状况简介

一、说明 自然语言处理已经进入大模型时代&#xff0c;然而从业人员必须了解整个知识体系、发展过程、知识结构&#xff0c;应用范围等一系列知识。本篇将报道此类概况。 二、自然语言处理简介 自然语言处理&#xff0c;或简称NLP&#xff0c;是处理和转换文本的计算机科学学科…...

python爬虫基于管道持久化存储操作

文章目录 基于管道持久化存储操作scrapy的使用步骤1.先转到想创建工程的目录下&#xff1a;cd ...2.创建一个工程3.创建之后要转到工程目录下4.在spiders子目录中创建一个爬虫文件5.执行工程setting文件中的参数 基于管道持久化存储的步骤&#xff1a;持久化存储1&#xff1a;保…...

【MySQL】数据类型(二)

文章目录 一. char字符串类型二. varchar字符串类型2.1 char和varchar比较 三. 日期和时间类型四. enum和set类型4.1 set的查询 结束语 一. char字符串类型 char (L) 固定长度字符串 L是可以存储的长度&#xff0c;单位是字符&#xff0c;最大长度是255 MySQL中的字符&#xff…...

基于Matlab实现连续模型求解方法

本文介绍了如何使用Matlab实现连续模型求解方法。首先&#xff0c;我们介绍了连续模型的概念&#xff0c;并明确了使用ODE和PDE求解器来求解常微分方程和偏微分方程的步骤。然后&#xff0c;我们通过一个简单的例子演示了如何将问题转化为数学模型&#xff0c;并使用Matlab编写…...

Tomcat 与 JDK 对应版本关系

对应关系 Tomcat版本 jdk版本11.0.x JDK 21及以后10.1.x JDK11及以后10.0.xJDK1.8及以后9.0.x JDK1.8及以后8.5.xJDK1.7及以后8.0.x JDK1.7及以后 查看对应关系方法&#xff1a; 登陆Tomcat官网&#xff1a;Apache Tomcat - Welcome! 结果&#xff1a;...

iOS自动化测试方案(二):Xcode开发者工具构建WDA应用到iphone

文章目录 一、环境准备1.1、软件环境1.2、硬件环境1.3、查看版本 二、安装WDA过程2.7、构建失败&#xff0c;这类错误有很多&#xff0c;比如在选择开发者账号后&#xff0c;就会提示:Failed to register bundle identifier表示应用唯一注册失败2.9、第二个错误&#xff0c;完全…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...