多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)
多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)
目录
- 多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览







基本介绍
1.Matlab实现PSO-BP粒子群优化BP神经网络多变量时间序列预测;
2.运行环境为Matlab2018b;
3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
4.data为数据集,PSO_BPNTS.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;
程序设计
- 完整程序和数据下载:私信博主回复MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)。
%------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------P_train = res(temp(1: 700), 1: 7)';
T_train = res(temp(1: 700), 8)';
M = size(P_train, 2);P_test = res(temp(701: end), 1: 7)';
T_test = res(temp(701: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 节点个数
inputnum = size(p_train, 1); % 输入层节点数
hiddennum = 5; % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数%% 建立网络
net = newff(p_train, t_train, hiddennum);%% 设置训练参数
net.trainParam.epochs = 1000; % 训练次数
net.trainParam.goal = 1e-6; % 目标误差
net.trainParam.lr = 0.01; % 学习率
net.trainParam.showWindow = 0; % 关闭窗口%% 参数初始化
c1 = 4.494; % 学习因子
c2 = 4.494; % 学习因子
maxgen = 30; % 种群更新次数
sizepop = 5; % 种群规模
Vmax = 1.0; % 最大速度
Vmin = -1.0; % 最小速度
popmax = 1.0; % 最大边界
popmin = -1.0; % 最小边界%% 节点总数
numsum = inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum;for i = 1 : sizepoppop(i, :) = rands(1, numsum); % 初始化种群V(i, :) = rands(1, numsum); % 初始化速度fitness(i) = fun(pop(i, :), hiddennum, net, p_train, t_train);
end%% 个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :); % 全局最佳
gbest = pop; % 个体最佳
fitnessgbest = fitness; % 个体最佳适应度值
BestFit = fitnesszbest; % 全局最佳适应度值%% 迭代寻优
for i = 1: maxgenfor j = 1: sizepop% 速度更新V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));V(j, (V(j, :) > Vmax)) = Vmax;V(j, (V(j, :) < Vmin)) = Vmin;% 种群更新pop(j, :) = pop(j, :) + 0.2 * V(j, :);pop(j, (pop(j, :) > popmax)) = popmax;pop(j, (pop(j, :) < popmin)) = popmin;% 自适应变异pos = unidrnd(numsum);if rand > 0.85pop(j, pos) = rands(1, 1);end% 适应度值fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);endfor j = 1 : sizepop% 个体最优更新if fitness(j) < fitnessgbest(j)gbest(j, :) = pop(j, :);fitnessgbest(j) = fitness(j);end% 群体最优更新 if fitness(j) < fitnesszbestzbest = pop(j, :);fitnesszbest = fitness(j);endendBestFit = [BestFit, fitnesszbest];
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502
相关文章:
多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)
多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络) 目录 多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现PSO-BP粒子群优化BP神经网络多变量时间序列预测ÿ…...
LeetCode 283. 移动零
移动零 问题描述 LeetCode 283. 移动零 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意,必须在不复制数组的情况下原地对数组进行操作。 解决思路 为了将所有 0 移动到数组的末尾&#…...
【数据结构】选择排序 堆排序(二)
目录 一,选择排序 1,基本思想 2, 基本思路 3,思路实现 二,堆排序 1,直接选择排序的特性总结: 2,思路实现 3,源代码 最后祝大家国庆快乐! 一…...
opencv实现目标跟踪及视频转存
创建跟踪器 def createTypeTracker(trackerType): 读取视频第一帧,选择跟踪的目标 读第一帧。 ok, frame video.read() 选择边界框 bbox cv2.selectROI(frame, False) 初始化跟踪器 tracker_type ‘MIL’ tracker createTypeTracker(tracker_type) 用第一…...
R | R及Rstudio安装、运行环境变量及RStudio配置
R | R及Rstudio安装、运行环境变量及RStudio配置 一、介绍1.1 R介绍1.2 RStudio介绍 二、R安装2.1 演示电脑系统2.2 R下载2.3 R安装2.4 R语言运行环境设置(环境变量)2.4.1 目的2.4.2 R-CMD测试2.4.3 设置环境变量 2.5 R安装测试 三、RStudio安装3.1 RStu…...
智能回答机器人的“智能”体现在哪里?
人工智能的广泛应用已经成为当今社会科技发展的趋势之一。通过人工智能技术,我们可以在不同领域中实现自动化、智能化和高效化,从而大大提升生产和生活效率。智能回答机器人的出现和使用便能很好的证明这一点。今天我们就来探讨一下智能会打机器人的“智…...
多网卡场景数据包接收时ip匹配规则
多网卡场景数据包接收时ip匹配规则 mac地址匹配规则 接收数据包时数据包中的目的mac地址匹配接收网卡的mac地址后,数据包才会继续被传递到网络层处理 ip地址匹配规则 图1: 参见:https://zhuanlan.zhihu.com/p/529160026?utm_id0 图2&am…...
安防视频平台EasyCVR视频调阅全屏播放显示异常是什么原因?
安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…...
1.5.C++项目:仿muduo库实现并发服务器之socket模块的设计
项目完整版在: 一、socket模块:套接字模块 二、提供的功能 Socket模块是对套接字操作封装的一个模块,主要实现的socket的各项操作。 socket 模块:套接字的功能 创建套接字 绑定地址信息 开始监听 向服务器发起连接 获取新连接 …...
whisper+剪映+chatgpt实现实时语音对话功能
whisper将录音文件转成文字---chatgpt回答---剪映tts将文字转成语言。 GitHub - openai/whisper: Robust Speech Recognition via Large-Scale Weak Supervision whisper剪映chatgpt实现实时语音对话功能_哔哩哔哩_bilibili...
ASUS华硕ZenBook 13灵耀U 2代U3300F笔记本UX333FN/FA原装出厂Win10系统工厂安装模式
系统自带所有驱动、出厂主题壁纸、系统属性华硕专属LOGO标志、Office办公软件、MyASUS华硕电脑管家等预装程序 下载链接:https://pan.baidu.com/s/1dK0vMZMECPlT63Rb6-jeFg?pwdbym5 所需要工具:16G或以上的U盘(非必需) 文件格式:HDI,SWP,O…...
前端面试的话术集锦第 21 篇博文——高频考点(设计模式)
这是记录前端面试的话术集锦第二十一篇博文——高频考点(设计模式),我会不断更新该博文。❗❗❗ 设计模式总的来说是一个抽象的概念,前人通过无数次的实践总结出的一套写代码的方式,通过这种方式写的代码可以让别人更加容易阅读、维护以及复用。 这一章节我们将来学习几…...
php实战案例记录(2)生成包含字母和数字但不重复的用户名
在PHP中,您可以使用以下代码生成不重复的10个用户名,每个用户名包含英文字母和数字: $generatedUsernames array(); // 存储生成的用户名while (count($generatedUsernames) < 10) {$username generateUsername();if (!in_array($usern…...
分类预测 | Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测
分类预测 | Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测 目录 分类预测 | Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测࿰…...
【ARMv8 SIMD和浮点指令编程】NEON 加载指令——如何将数据从内存搬到寄存器(其它指令)?
除了基础的 LDx 指令,还有 LDP、LDR 这些指令,我们也需要关注。 1 LDNP (SIMD&FP) 加载 SIMD&FP 寄存器对,带有非临时提示。该指令从内存加载一对 SIMD&FP 寄存器,向内存系统发出访问是非临时的提示。用于加载的地址是根据基址寄存器值和可选的立即偏移量计算…...
ElementPlus· tab切换/标签切换 + 分页
tab切换 ---> <el-tabs><el-tab-pane>... 分页 --------> <el-pagination> tab切换 // tab标签切换 // v-model双向绑定选项中的name,tab-change事件在 activeName改变时触发 <script setup> const tabChange (tab, event)>{…...
华为云云耀云服务器L实例评测|搭建CounterStrike Source Delicated Server(CS起源游戏服务器)
华为云云耀云服务器L实例评测|搭建CounterStrike Source Delicated Server(CS起源游戏服务器) #【有奖征文】华为云云服务器焕新上线,快来亲身感受评测吧!# ⭐️ CounterStrikeSource(CS起源是Valve的一款…...
腾讯云中使用ubuntu安装属于自己的overleaf
在自己的云服务器上安装overleaf的需求是从写论文开始的,总担心自己的论文放在一个网站上被泄露,所以想要在自己的服务器上安装自己的overleaf,正好手边有一个云服务器,现在开始。 配置腾讯云 因为使用overleaf的优势就是在不同…...
【redisson学习笔记】
1)clone项目 git clone https://github.com/redisson/redisson.git本来想直接用maven编译源码, 却发现各种错误,主要是maven的编译插件版本问题。 2)然后用maven包方式引入 <dependencies><dependency><groupId>org.redisson</gr…...
gurobi属性篇一
1.构造目标函数 (1)一般的写法: 我们常见的目标函数写法通常是定义好式子zf(x,y,...),然后用m.setObjective(z, GRB。MINIMIZE),这样的定义方式比较普遍。 这也是一般的写法。 (2)但还有一种写法…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
