当前位置: 首页 > news >正文

opencv实现目标跟踪及视频转存

创建跟踪器

def createTypeTracker(trackerType):
读取视频第一帧,选择跟踪的目标

读第一帧。

ok, frame = video.read()

选择边界框

bbox = cv2.selectROI(frame, False)
初始化跟踪器
tracker_type = ‘MIL’
tracker = createTypeTracker(tracker_type)

用第一帧和包围框初始化跟踪器

ok = tracker.init(frame, bbox)
随着视频进行更新跟踪

更新跟踪器

ok, bbox = tracker.update(frame)

完整代码如下:

import cv2
import sys
import numpy as np# 创建一个跟踪器,algorithm: KCF、CSRT、DaSiamRPN、GOTURM、MIL
trackerTypes = ['BOOSTING', 'MIL', 'KCF', 'TLD', 'MEDIANFLOW', 'GOTURN', 'MOSSE', 'CSRT']def createTypeTracker(trackerType):if trackerType == trackerTypes[0]:tracker = cv2.legacy.TrackerBoosting_create()elif trackerType == trackerTypes[1]:tracker = cv2.TrackerMIL_create()elif trackerType == trackerTypes[2]:tracker = cv2.legacy.TrackerKCF_create()elif trackerType == trackerTypes[3]:tracker = cv2.legacy.TrackerTLD_create()elif trackerType == trackerTypes[4]:tracker = cv2.legacy.TrackerMedianFlow_create()elif trackerType == trackerTypes[5]:  # 暂时存在问题tracker = cv2.TrackerGOTURN_create()elif trackerType == trackerTypes[6]:tracker = cv2.legacy.TrackerMOSSE_create()elif trackerType == trackerTypes[7]:tracker = cv2.legacy.TrackerCSRT_create()else:tracker = Nonereturn trackervideoPth = 'D:/workspace_all/pyCharm/BicycleTrackerByOpenCV/video2.mp4'if __name__ == '__main__':# 经测试CSRT效果最好tracker_type = 'CSRT'tracker = createTypeTracker(tracker_type)# 读取视频video = cv2.VideoCapture(videoPth)#fps = video.get(cv2.CAP_PROP_FPS)# 用于展示cv2.namedWindow("test", 0)cv2.resizeWindow("test", 1200, 900)  # 设置窗口的长和宽# 获取视频的帧率和尺寸fps = video.get(cv2.CAP_PROP_FPS)width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))# 保存跟踪视频output = cv2.VideoWriter('D:/desktop/output.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))# 如果视频没有打开,退出。if not video.isOpened():print"Could not open video"sys.exit()# 读第一帧。ok, frame = video.read()#cv2.imshow('test', frame)if not ok:print('Cannot read video file')sys.exit()# 定义一个初始边界框bbox = (287, 23, 86, 320)# 选择一个不同的边界框bbox = cv2.selectROI('test', frame, False)# 用第一帧和包围框初始化跟踪器ok = tracker.init(frame, bbox)while True:# 读取一个新的帧ok, frame = video.read()if not ok:break# 启动计时器timer = cv2.getTickCount()# 更新跟踪器ok, bbox = tracker.update(frame)# 计算帧率(FPS)fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer);# 绘制包围框if ok:# 跟踪成功p1 = (int(bbox[0]), int(bbox[1]))p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))cv2.rectangle(frame, p1, p2, (0, 0, 255), 2, 3)else:# 跟踪失败cv2.putText(frame, "Tracking failure detected", (100, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)# 在帧上显示跟踪器类型名字cv2.putText(frame, tracker_type + " Tracker", (100, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2);# 在帧上显示帧率FPScv2.putText(frame, "FPS : " + str(int(fps)), (100, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2);# 显示结果# cv2.imshow("Tracking", frame)cv2.imshow('test', frame)# 保存视频output.write(frame)# 按ESC键退出k = cv2.waitKey(1) & 0xffif k == 27: breakoutput.release()

跟踪效果

在这里插入图片描述

常见问题

https://blog.csdn.net/taotao_guiwang/article/details/133301116?spm=1001.2014.3001.5501

参考

https://blog.csdn.net/weixin_45823221/article/details/128470499

相关文章:

opencv实现目标跟踪及视频转存

创建跟踪器 def createTypeTracker(trackerType): 读取视频第一帧,选择跟踪的目标 读第一帧。 ok, frame video.read() 选择边界框 bbox cv2.selectROI(frame, False) 初始化跟踪器 tracker_type ‘MIL’ tracker createTypeTracker(tracker_type) 用第一…...

R | R及Rstudio安装、运行环境变量及RStudio配置

R | R及Rstudio安装、运行环境变量及RStudio配置 一、介绍1.1 R介绍1.2 RStudio介绍 二、R安装2.1 演示电脑系统2.2 R下载2.3 R安装2.4 R语言运行环境设置(环境变量)2.4.1 目的2.4.2 R-CMD测试2.4.3 设置环境变量 2.5 R安装测试 三、RStudio安装3.1 RStu…...

智能回答机器人的“智能”体现在哪里?

人工智能的广泛应用已经成为当今社会科技发展的趋势之一。通过人工智能技术,我们可以在不同领域中实现自动化、智能化和高效化,从而大大提升生产和生活效率。智能回答机器人的出现和使用便能很好的证明这一点。今天我们就来探讨一下智能会打机器人的“智…...

多网卡场景数据包接收时ip匹配规则

多网卡场景数据包接收时ip匹配规则 mac地址匹配规则 接收数据包时数据包中的目的mac地址匹配接收网卡的mac地址后,数据包才会继续被传递到网络层处理 ip地址匹配规则 图1: 参见:https://zhuanlan.zhihu.com/p/529160026?utm_id0 图2&am…...

安防视频平台EasyCVR视频调阅全屏播放显示异常是什么原因?

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…...

1.5.C++项目:仿muduo库实现并发服务器之socket模块的设计

项目完整版在: 一、socket模块:套接字模块 二、提供的功能 Socket模块是对套接字操作封装的一个模块,主要实现的socket的各项操作。 socket 模块:套接字的功能 创建套接字 绑定地址信息 开始监听 向服务器发起连接 获取新连接 …...

whisper+剪映+chatgpt实现实时语音对话功能

whisper将录音文件转成文字---chatgpt回答---剪映tts将文字转成语言。 GitHub - openai/whisper: Robust Speech Recognition via Large-Scale Weak Supervision whisper剪映chatgpt实现实时语音对话功能_哔哩哔哩_bilibili...

ASUS华硕ZenBook 13灵耀U 2代U3300F笔记本UX333FN/FA原装出厂Win10系统工厂安装模式

系统自带所有驱动、出厂主题壁纸、系统属性华硕专属LOGO标志、Office办公软件、MyASUS华硕电脑管家等预装程序 下载链接:https://pan.baidu.com/s/1dK0vMZMECPlT63Rb6-jeFg?pwdbym5 所需要工具:16G或以上的U盘(非必需) 文件格式:HDI,SWP,O…...

前端面试的话术集锦第 21 篇博文——高频考点(设计模式)

这是记录前端面试的话术集锦第二十一篇博文——高频考点(设计模式),我会不断更新该博文。❗❗❗ 设计模式总的来说是一个抽象的概念,前人通过无数次的实践总结出的一套写代码的方式,通过这种方式写的代码可以让别人更加容易阅读、维护以及复用。 这一章节我们将来学习几…...

php实战案例记录(2)生成包含字母和数字但不重复的用户名

在PHP中&#xff0c;您可以使用以下代码生成不重复的10个用户名&#xff0c;每个用户名包含英文字母和数字&#xff1a; $generatedUsernames array(); // 存储生成的用户名while (count($generatedUsernames) < 10) {$username generateUsername();if (!in_array($usern…...

分类预测 | Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测

分类预测 | Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测 目录 分类预测 | Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测&#xff0…...

【ARMv8 SIMD和浮点指令编程】NEON 加载指令——如何将数据从内存搬到寄存器(其它指令)?

除了基础的 LDx 指令,还有 LDP、LDR 这些指令,我们也需要关注。 1 LDNP (SIMD&FP) 加载 SIMD&FP 寄存器对,带有非临时提示。该指令从内存加载一对 SIMD&FP 寄存器,向内存系统发出访问是非临时的提示。用于加载的地址是根据基址寄存器值和可选的立即偏移量计算…...

ElementPlus· tab切换/标签切换 + 分页

tab切换 ---> <el-tabs><el-tab-pane>... 分页 --------> <el-pagination> tab切换 // tab标签切换 // v-model双向绑定选项中的name&#xff0c;tab-change事件在 activeName改变时触发 <script setup> const tabChange (tab, event)>{…...

华为云云耀云服务器L实例评测|搭建CounterStrike Source Delicated Server(CS起源游戏服务器)

华为云云耀云服务器L实例评测&#xff5c;搭建CounterStrike Source Delicated Server&#xff08;CS起源游戏服务器&#xff09; #【有奖征文】华为云云服务器焕新上线&#xff0c;快来亲身感受评测吧&#xff01;# ⭐️ CounterStrikeSource&#xff08;CS起源是Valve的一款…...

腾讯云中使用ubuntu安装属于自己的overleaf

在自己的云服务器上安装overleaf的需求是从写论文开始的&#xff0c;总担心自己的论文放在一个网站上被泄露&#xff0c;所以想要在自己的服务器上安装自己的overleaf&#xff0c;正好手边有一个云服务器&#xff0c;现在开始。 配置腾讯云 因为使用overleaf的优势就是在不同…...

【redisson学习笔记】

1)clone项目 git clone https://github.com/redisson/redisson.git本来想直接用maven编译源码&#xff0c; 却发现各种错误&#xff0c;主要是maven的编译插件版本问题。 2)然后用maven包方式引入 <dependencies><dependency><groupId>org.redisson</gr…...

gurobi属性篇一

1.构造目标函数 &#xff08;1&#xff09;一般的写法&#xff1a; 我们常见的目标函数写法通常是定义好式子zf(x,y,...)&#xff0c;然后用m.setObjective(z, GRB。MINIMIZE)&#xff0c;这样的定义方式比较普遍。 这也是一般的写法。 &#xff08;2&#xff09;但还有一种写法…...

【python数据建模】Pandas库

概述 Pandas库主要提供了三种数据结构&#xff1a; &#xff08;1&#xff09;Series&#xff1a;带标签的一维数据 &#xff08;2&#xff09;DataFrame&#xff1a;带标签且大小可变的二维表结构 &#xff08;3&#xff09;Panel&#xff1a;带标签且大小可变的三维数据 Pan…...

Flutter笔记:关于应用程序中提交图片作为头像

Flutter笔记 关于应用程序中提交图片作为头像 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/133418554…...

【C++】C++的类型转换

文章目录 1. C语言中的类型转换2. C中的类型转换2.1 static_cast2.2 reinterpret_cast2.3 const_cast2.4 dynamic 1. C语言中的类型转换 在C语言中&#xff0c;经常会出现一种情况&#xff1a;运算符两边的类型不同&#xff0c;或者形参实参类型不匹配&#xff0c;此时就会发生…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...