【python数据建模】Pandas库
概述
Pandas库主要提供了三种数据结构:
(1)Series:带标签的一维数据
(2)DataFrame:带标签且大小可变的二维表结构
(3)Panel:带标签且大小可变的三维数据
Pandas 数据结构就像是低维数据的容器。比如,DataFrame 是 Series 的容器,Series 则是标量的容器。使用这种方式,可以在容器中以字典的形式插入或删除对象。
Series
创建对象
import pandas as pd
import numpy as np# 以字典形式给出标签和一维数据
d = {'a': 1, 'b': 2, 'c': 3}
ser=pd.Series(d)# data:传输数据 index:传输标签
a=np.arange(0,3)
d=['x','y','z']
ser=pd.Series(data=a,index=d)
DataFrame
创建对象
import pandas as pd
import numpy as np# index是行标签 columns是列标签 默认都是从0开始的正数索引
d=np.arange(1,10).reshape(3,3)
a=['A','B','C']
e=['一','二','三']
df1=pd.DataFrame(data=d,index=a)
df2=pd.DataFrame(data=d,index=a)
df=pd.DataFrame(data=d,index=e,columns=a)
"""
dfA B C
一 1 2 3
二 4 5 6
三 7 8 9
"""
查看数据
1、查看头部与尾部数据
# head(n):从头部开始,选取n行数据
print(df.head(1))# tail(n):从尾部开始,选取n行数据
print(df.tail(2))
2、显示索引与列名
# 索引 行标签
df.index
"""
Index(['一', '二', '三'], dtype='object')
"""
# 列名 列标签
df.columns
"""
Index(['A', 'B', 'C'], dtype='object')
"""
3、to_numpy():输出不包含行索引和列标签的numpy对象
df.to_numpy()
4、describe():快速查看数据的统计摘要
df.describe()
"""A B C
count 3.0 3.0 3.0
mean 4.0 5.0 6.0
std 3.0 3.0 3.0
min 1.0 2.0 3.0
25% 2.5 3.5 4.5
50% 4.0 5.0 6.0
75% 5.5 6.5 7.5
max 7.0 8.0 9.0
"""
索引
1 按列标签索引
print(df['A'])
"""
一 1
二 4
三 7
Name: A, dtype: int32
"""
2 按行切片索引
print(df[0:1])
"""A B C
一 1 2 3
"""
print(df['二':'三'])
"""A B C
二 4 5 6
三 7 8 9
"""
3 loc方法
用DataFrame对象的loc方法,同时按列标签和行切片索引
print(df.loc['二':'三','A'])
"""
二 4
三 7
Name: A, dtype: int32
"""
4 iloc方法
用DataFrame对象的iloc方法,用整数or整数数组按位置索引
print(df.iloc[1,[1,2]])
"""
B 5
C 6
Name: 二, dtype: int32
"""
print(df.iloc[:,[0,2]])
"""A C
一 1 3
二 4 6
三 7 9
"""
5 布尔索引
print(df[df.A>5])
"""A B C
三 7 8 9
"""
print(df[df>5])
"""A B C
一 NaN NaN NaN
二 NaN NaN 6.0
三 7.0 8.0 9.0
"""
# isin方法
print(df[df.isin([4,9])])
数据输入输出
CSV
# 将df写入csv格式文件
df.to_csv('文件名.csv')
#读取
pd.read_csv('文件名.csv')
excel
同cvs,有to_csv
和read_csv
类似SQL的聚合函数
连接:concat
concat()函数用于连接Pandas对象。
列标签相同的话,起到一个上下行拼接的效果。列标签不同的话,会变成列拼接,NAN缺失值会补全数据表。
import pandas as pd
import numpy as npd=np.arange(1,10).reshape(3,3)
a=['A','B','C']
e=['一','二','三']
df=pd.DataFrame(data=d,index=e,columns=a)
df1=pd.DataFrame(data=np.random.rand(3,3),index=e,columns=a)
print(pd.concat([df,df1]))
"""A B C
一 1.000000 2.000000 3.000000
二 4.000000 5.000000 6.000000
三 7.000000 8.000000 9.000000
一 0.970790 0.092893 0.438776
二 0.580138 0.996153 0.698677
三 0.554084 0.640035 0.574166
"""
d=np.arange(1,10).reshape(3,3)
a=['A','B','C']
e=['一','二','三']
df=pd.DataFrame(data=d,index=e,columns=a)
df1=pd.DataFrame(data=np.random.rand(3,4),index=e)
print(pd.concat([df,df1]))
"""A B C 0 1 2 3
一 1.0 2.0 3.0 NaN NaN NaN NaN
二 4.0 5.0 6.0 NaN NaN NaN NaN
三 7.0 8.0 9.0 NaN NaN NaN NaN
一 NaN NaN NaN 0.286544 0.470042 0.229887 0.323514
二 NaN NaN NaN 0.475214 0.994036 0.724422 0.788663
三 NaN NaN NaN 0.231405 0.785781 0.537038 0.576568
"""
连接:merge
跟SQL语句中的join函数一个效果
import pandas as pd
import numpy as npleft = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
df=pd.merge(left,right)
print(df)
"""key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
"""
分组:groupby
相关文章:
【python数据建模】Pandas库
概述 Pandas库主要提供了三种数据结构: (1)Series:带标签的一维数据 (2)DataFrame:带标签且大小可变的二维表结构 (3)Panel:带标签且大小可变的三维数据 Pan…...

Flutter笔记:关于应用程序中提交图片作为头像
Flutter笔记 关于应用程序中提交图片作为头像 作者:李俊才 (jcLee95):https://blog.csdn.net/qq_28550263 邮箱 :291148484163.com 本文地址:https://blog.csdn.net/qq_28550263/article/details/133418554…...

【C++】C++的类型转换
文章目录 1. C语言中的类型转换2. C中的类型转换2.1 static_cast2.2 reinterpret_cast2.3 const_cast2.4 dynamic 1. C语言中的类型转换 在C语言中,经常会出现一种情况:运算符两边的类型不同,或者形参实参类型不匹配,此时就会发生…...

ahk系列——ahk_v2实现win10任意界面ocr
前言: 不依赖外部api接口,界面简洁,翻译快速,操作简单, 有网络就能用 、还可以把ocr结果非中文翻译成中文、同样可以识别中英日韩等60多个国家语言并翻译成中文,十分的nice 1、所需环境 windows10及其以上…...
linux下端口映射
linux下端口映射 1. 允许数据包转发 echo 1 >/proc/sys/net/ipv4/ip_forwardiptables -t nat -A POSTROUTING -j MASQUERADEiptables -A FORWARD -i [内网网卡名称] -j ACCEPTiptables -t nat -A POSTROUTING -s [内网网段] -o [外网网卡名称] -j MASQUERADE# 例:…...

C++ 迭代器(iterator)
迭代器介绍 迭代器(iterator):容器类型内置的“指针” - 使用迭代器可以访问某个元素,迭代器也能从一个元素移动到另一个元素。 - 有迭代器的类型都拥有 begin 和 end 成员- begin:返回指向第一个元素(或字…...

基于Python3搭建qt开发环境
Python可视化编程相信大部分刚接触都是tkinter,tkinter是Python自带的库,不需要安装第三方库即可使用,在我的Python专栏中也有很多基于tkinter来设计的可视化界面。本篇文章将尝试另外一个Python的可视化编程库(pyqt),与tkinter编…...

Linux常见操作命令(1)
前言:作者也是初学Linux,可能总结的还不是很到位 ♈️今日夜电波:达尔文—林俊杰 0:30━━━━━━️💟──────── 4:06 🔄 ◀️ …...

GEO生信数据挖掘(一)数据集下载和初步观察
检索到目标数据集后,开始数据挖掘,本文以阿尔兹海默症数据集GSE1297为例 目录 GEOquery 简介 安装并加载GEOquery包 getGEO函数获取数据(联网下载) 更换下载数据源 对数据集进行初步观察处理 GEOquery 简介 GEOquery是一个…...

Tensorflow2 GPU 安装方法
一、Tensorflow2 GPU 安装方法 1. 首先安装Anaconda3环境2. 在Anaconda Prompt 中安装tensorflow23. 验证GPU是否可以使用 1. 首先安装Anaconda3环境 https://www.anaconda.com/ 2. 在Anaconda Prompt 中安装tensorflow2 conda update conda conda create -n tensorflow pyt…...

QSS之QLineEdit
QLineEdit我们在开发过程中是经常使用的,一般情况下默认的风格是不适合设计师的要求,本篇介绍QLineEdit的基本qss风格: 1.基本属性设置 QLineEdit{background-color:#FFFFFF;color:#333333;border:none;} 2.悬浮状态设置 QLineEdit:hover…...

在比特币上支持椭圆曲线 BLS12–381
通过使用智能合约实现来支持任何曲线 BLS12–381 是一种较新的配对友好型椭圆曲线。 与常用的 BN-256 曲线相比,BLS12-381 的安全性明显更高,并且安全目标是 128 位。 所有其他区块链,例如 Zcash 和以太坊,都必须通过硬分叉才能升…...

简单讲解 glm::mat4
文章目录 前言一、下载glm库二、基本数学知识1. 三维中的 4 x 4 矩阵2.旋转3. 位移4. 缩放5. 组合 三、行向量或列向量四、总结 前言 glm库是OpenGL的官方数学库,里面内置多种跟几何变换相关的函数,熟练掌握glm库可以省下很多麻烦。 因为最近在项目中主…...
第3章-指标体系与数据可视化-3.1.1-Matplotlib绘图库
目录 3.1 Python可视化 3.1.1 Matplotlib绘图库 1. 线图 2. 饼图 3. 条形图 4. 直方图 5.散点图...

探索视听新纪元: ChatGPT的最新语音和图像功能全解析
🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🐅🐾猫头虎建议程序员必备技术栈一览表📖: 🤖 人工智能 AI: 🧠 Machine …...

华为乾坤区县教育安全云服务解决方案(1)
华为乾坤区县教育安全云服务解决方案(1) 课程地址方案背景客户痛点分析区县教育网概述区县教育网业务概述区县教育网业务安全风险分析区县教育网安全运维现状分析区县教育网安全建设痛点分析 安全解决方案功能概述架构概述方案架构设备选型 课程地址 本…...

《Jetpack Compose从入门到实战》第三章 定制 UI 视图
目录 配置颜色、字体与形状Welcome PageLogin PageHome Page 主题CompositionLocal 配置颜色、字体与形状 -ui.theme.Color.kt val pink100 Color(0xFFFFF1F1) val pink900 Color(0xFF3F2C2C) val white Color(0xFFFFFFFF) val white850 Color(0xD9FFFFFF) val gray Col…...

Kubernetes组件和架构简介
目录 一.概念简介 1.含义: 2.主要功能: 3.相关概念: 二.组件和架构介绍 1.master:集群的控制平面,管理集群 2.node:集群的数据平面,为容器提供工作环境 3.kubernetes简单架构图解 一.概…...

ElementUI实现增删改功能以及表单验证
目录 前言 BookList.vue action.js 展示效果 前言 本篇还是在之前的基础上,继续完善功能。上一篇完成了数据表格的查询,这一篇完善增删改,以及表单验证。 BookList.vue <template><div class"books" style"pa…...
C++中有哪些运算符以及它们的优先级?
C中常用的运算符包括算术运算符、赋值运算符、关系运算符、逻辑运算符、位运算符等。这里列举一些常见的运算符以及它们的优先级(从高到低): 圆括号()一元正号、一元负号-数组下标[]成员选择符(点号.、箭头…...

龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...

tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...

GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...