当前位置: 首页 > news >正文

【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 算例1——图像去模糊

2.2 算例2——视频去噪

🎉3 参考文献

🌈4 Matlab代码、数据、文献讲解


💥1 概述

去视频去噪是一项广泛应用于图像和视频处理的技术,其应用范围包括但不限于图像和视频去模糊、图像和视频去噪、深度数据增强、热空气湍流稳定和多视图合成等方面。

在图像处理中,全变异正则化最小二乘反卷积是一种常见的方法。该方法通过采用全变异正则化原理,并将最小二乘反卷积算法与之结合,来提高图像处理的效果。本文基于增强拉格朗日概念 [1],实现了最新的算法,该算法可以被看作是众所周知的乘法器交替方向方法(ADMM)的一种变体。

增强拉格朗日概念在最小二乘反卷积的应用中起到了重要的作用。它通过引入拉格朗日乘子和对偶变量,构建了一个优化问题的增强版本,进一步提高了算法的准确性和鲁棒性。而乘法器交替方向方法 (ADMM)则是一种常用的优化算法,通过在每个迭代步骤中交替更新变量,有效地解决了图像处理中的正则化问题。

通过运用增强拉格朗日概念和乘法器交替方向方法(ADMM),我们可以实现更先进的全变异正则化最小二乘反卷积算法。这种算法在图像处理中具有重要的作用,可以提高图像的清晰度、恢复细节、去除噪声等。同时,由于其较高的效率和准确性,该算法也在实际应用中得到了广泛的应用。

随着对图像和视频处理需求的不断增加,全变异正则化最小二乘反卷积算法的研究将继续深入。我们可以进一步探索和改进增强拉格朗日概念和乘法器交替方向方法(ADMM)等相关技术,为图像和视频处理领域的发展做出更大的贡献。

文献[1]:

本文提出了一种恢复视频序列的快速算法。与现有方法相反,所提出的算法没有将视频恢复视为一系列图像恢复问题。相反,它将视频序列视为时空体积,并提出时空总变分正则化以增强解的平滑度。通过将原始的无约束最小化问题转换为等效的约束最小化问题来解决优化问题。使用增强拉格朗日方法处理约束,使用交替方向方法(ADM)迭代查找子问题的解。该算法具有广泛的应用范围,包括视频去模糊和去噪、视差图细化和减少热空气湍流效应。

📚2 运行结果

2.1 算例1——图像去模糊

2.2 算例2——视频去噪

部分代码: 

% Setup parameters (for example)
opts.beta    = [1 1 10];
opts.print   = true;
opts.method  = 'l1';% Setup mu
mu           = 1;% Main routine
tic
out = deconvtv(g, 1, mu, opts);
toc% Display results
figure(1);
imshow(g(:,:,5));
title('input');figure(2);
imshow(out.f(:,:,5));
title('output');

% Setup parameters (for example)
opts.beta    = [1 1 10];
opts.print   = true;
opts.method  = 'l1';

% Setup mu
mu           = 1;

% Main routine
tic
out = deconvtv(g, 1, mu, opts);
toc

% Display results
figure(1);
imshow(g(:,:,5));
title('input');

figure(2);
imshow(out.f(:,:,5));
title('output');

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1] S.H. Chan, R. Khoshabeh, K.B. Gibson, P.E. Gill, and T.Q. Nguyen, “An augmented Lagrangian

method for total variation image restoration,” IEEE Trans. Image Process., vol. 20, no. 11, pp.

3097–3111, Nov. 2011.

[2] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total

variation image reconstruction,” SIAM Journal on Imaging Sciences, vol. 1, pp. 248–272, 2008.

[3] B. Wahlberg, S. Boyd, M. Annergren, and Y. Wang, “An ADMM algorithm for a class of total variation regularized estimation problems,” in Proceedings 16th IFAC Symposium on System Identifification,

Jul. 2012, vol. 16.

🌈4 Matlab代码、数据、文献讲解

相关文章:

【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

国庆day3---网络编程知识点脑图整合

...

链表经典面试题(六)

判断链表是否有环 1.题目2.思路分析(文字)3.详细的注释和代码实现 1.题目 2.思路分析(文字) 3.详细的注释和代码实现 public class Solution {public boolean hasCycle(ListNode head) {//定义两个快慢指针ListNode fast head;ListNode slow head;//让快指针走两步,慢指针走…...

SM2签名算法中随机数K的随机性对算法安全的影响

一、构造如下SM2签名算法过程1 Sig1 r1 F2BFC778C66127C74E3613FAA1AB6E207059740B317597A78BBFCDF58AED0A51 Sig1 s1 4FC719D00334CCC23098036DEEAA71DB464A076EFA79283389D3414D70659E88 私钥d B3124DC843BB8BA61F035A7D0938251F5DD4CBFC…...

郁金香2021年游戏辅助技术中级班(六)

郁金香2021年游戏辅助技术中级班(六) 055-ce,xdbg调试分析接任务交任务完成任务056-C,C写代码测试接任务交任务完成任务我们再来分析一下完成任务 057-C,C写代码测试交任务完成任务 055-ce,xdbg调试分析接任务交任务完成任务 创建一个新角色&#xff0c…...

毛玻璃员工卡片悬停效果

效果展示 页面结构组成 通过效果展示图,我们可以看出页面布局比较常规,最核心的就是卡片,当鼠标没有悬停在卡片上时,文字和头像处于半透明状态,当鼠标悬停在卡片上是,底部会展示社交图标。 CSS 知识点 b…...

闪存工作原理

前言 1、闪存类型 闪存有两种分类,NAND型闪存主要用于存储 2、MOS的特性 MOS管的三个引脚分别是Gate(G)、Source(S)和Drain(D)。Gate(G)引脚是晶闸管的控制引脚&…...

从0到一配置单节点zookeeper

我的软件: 链接:https://pan.baidu.com/s/1nImkjOgzPkgaFOuUPwd1Sg?pwd2wqo 提取码:2wqo 视频教程p1-zookeeper安装和配置以及启动服务和检测是否运行成功_哔哩哔哩_bilibili 一、安装zookeeper http://zookeeper.apache.org/releases.h…...

【JVM】第三篇 JVM对象创建与内存分配机制深度剖析

目录 一. JVM对象创建过程详解1. 类加载检查2. 分配内存2.1 如何划分内存?2.2 并发问题3. 初始化4. 设置对象头5. 执行<init>方法二. 对象头和指针压缩详解三. JVM对象内存分配详解四.逃逸分析 & 栈上分配 & 标量替换详解1. 逃逸分析 & 栈上分配2. 标量替换…...

【信创】麒麟v10(arm)-mysql8-mongo-redis-oceanbase

Win10/Win11 借助qume模拟器安装arm64麒麟v10 前言 近两年的国产化进程一直在推进&#xff0c;基于arm架构的国产系统也在积极发展&#xff0c;这里记录一下基于麒麟v10arm版安装常见数据库的方案。 麒麟软件介绍: 银河麒麟高级服务器操作系统V10 - 国产操作系统、银河麒麟、中…...

maven settings.xml文件(包含了配置阿里云镜像)

mac 的 settings.xml 我配置的位置是&#xff1a; /Applications/IntelliJ IDEA.app/Contents/plugins/maven/lib/maven3/conf/settings.xml 然后 local repository 我配置的位置是&#xff1a; /Applications/IntelliJ IDEA.app/Contents/plugins/maven/lib/maven3/conf/repos…...

分类预测 | MATLAB实现WOA-FS-SVM鲸鱼算法同步优化特征选择结合支持向量机分类预测

分类预测 | MATLAB实现WOA-FS-SVM鲸鱼算法同步优化特征选择结合支持向量机分类预测 目录 分类预测 | MATLAB实现WOA-FS-SVM鲸鱼算法同步优化特征选择结合支持向量机分类预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 MATLAB实现WOA-FS-SVM鲸鱼算法同步优化特征选择结…...

Redis是否要分库的实践

Redis的分库其实没有带来任何效率上的提升&#xff0c;只是提供了一个命名空间&#xff0c;而这个命名空间可以完全通过key的设计来避开这个问题。 一个优雅的Redis的key的设计如下...

String 进阶

字符串拼接 // 常量与常量的拼接结果放在常量池 // 常量池中不会存在相同的常量 String str1 "a" "b"; System.out.println(str1 "ab");// 拼接时有一个为变量&#xff0c;则结果会放在堆中。 // 变量拼接的原理是 StringBuilder append 最后…...

ESP32设备通信-两个ESP32间UART通信

两个ESP32间UART通信 文章目录 两个ESP32间UART通信1、UART介绍2、软件准备3、硬件准备4、代码实现在本文中,我们将使用 Arduino IDE 的 UART 硬件库在两个 ESP32 板之间执行 UART 或串行通信。 要使用 USB 端口调试和编程 ESP32,需要使用称为通用异步接收器/发送器 (UART) 通…...

LCR 052.递增顺序搜索树

​题目来源&#xff1a; leetcode题目&#xff0c;网址&#xff1a;LCR 052. 递增顺序搜索树 - 力扣&#xff08;LeetCode&#xff09; 解题思路&#xff1a; 中序遍历时修改指针即可。 解题代码&#xff1a; /*** Definition for a binary tree node.* public class TreeNo…...

Mysql集群技术问答

前提&#xff1a;Mysql集群服务部署到一个群组的所有服务器上&#xff0c;一般20台为一个群组&#xff0c;群组内所有节点数据实时同步&#xff0c;动态自动维护节点。 问&#xff1a;集群空间跟传统空间的最大不同是什么&#xff1f; 答&#xff1a;集群空间有数据同步和宕机检…...

2023版 STM32实战4 滴答定时器精准延时

SysTick简介与特性 -1- SysTick属于系统时钟。 -2- SysTick定时器被捆绑在NVIC中。 -3- SysTick可以产生中断,且中断不可屏蔽。 SysTick的时钟源查看 通过时钟树可以看出滴答的时钟最大为72MHZ/89MHZ 通过中文参考手册也可以得到这个结论 代码编写&#xff08;已经验证&a…...

ESP32设备驱动-数据持久化到Flash

数据持久化到Flash 文章目录 数据持久化到Flash1、Preferences库介绍2、软件准备3、硬件准备4、代码实现4.1 初始化NVS Flash4.2 读写Key/Value对4.3 保存/读取网络凭据4.4 复位后记住最后的 GPIO 状态在本文中,我们将介绍如何使用 Preferences库将数据存储到 ESP32 的Flash中…...

Swift data范围截取问题

文章目录 一、截取字符串的几种方法1. 截取前几位2. 截取后几位3. subData4. 下标截取 二、subData(in:) 报错 EXC_BREAKPOINT 一、截取字符串的几种方法 1. 截取前几位 mobileID.prefix(32)2. 截取后几位 mobileID.suffix(3)3. subData data.subdata(in: 0..<4)4. 下标…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建

【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...

React父子组件通信:Props怎么用?如何从父组件向子组件传递数据?

系列回顾&#xff1a; 在上一篇《React核心概念&#xff1a;State是什么&#xff1f;》中&#xff0c;我们学习了如何使用useState让一个组件拥有自己的内部数据&#xff08;State&#xff09;&#xff0c;并通过一个计数器案例&#xff0c;实现了组件的自我更新。这很棒&#…...

LeetCode - 148. 排序链表

目录 题目 思路 基本情况检查 复杂度分析 执行示例 读者可能出的错误 正确的写法 题目 148. 排序链表 - 力扣&#xff08;LeetCode&#xff09; 思路 链表归并排序采用"分治"的策略&#xff0c;主要分为三个步骤&#xff1a; 分割&#xff1a;将链表从中间…...