PyTorch学习笔记:nn.SmoothL1Loss——平滑L1损失
PyTorch学习笔记:nn.SmoothL1Loss——平滑L1损失
torch.nn.SmoothL1Loss(size_average=None, reduce=None, reduction='mean', beta=1.0)
功能:创建一个平滑后的L1L_1L1损失函数,即Smooth L1:
l(x,y)=L={l1,…,lN}Tl(x,y)=L=\{l_1,\dots,l_N\}^T l(x,y)=L={l1,…,lN}T
其中,
ln={12β(xn,yn)2,∣xn−yn∣<β∣xn−yn∣−12β,otherwise\begin{aligned} l_n=\left\{ \begin{matrix} & \frac{1}{2\beta}(x_n,y_n)^2, \quad |x_n-y_n|<\beta\\ &|x_n-y_n|-\frac12\beta,\quad \text{otherwise} \end{matrix} \right. \end{aligned} ln={2β1(xn,yn)2,∣xn−yn∣<β∣xn−yn∣−21β,otherwise
如果绝对值误差低于β\betaβ,则创建一个平方项的损失(L2L_2L2),否则使用绝对值损失(L1L_1L1),此损失对异常值的敏感性低于L2L_2L2损失,即当xxx与yyy相差过大时,该损失数值要小于L2L_2L2损失数值,在某些情况下该损失可以防止梯度爆炸,损失图如下所示:

输入:
size_average与reduce已经被弃用,具体功能可由reduction替代reduction:指定损失输出的形式,有三种选择:none|mean|sum。none:损失不做任何处理,直接输出一个数组;mean:将得到的损失求平均值再输出,会输出一个数;sum:将得到的损失求和再输出,会输出一个数beta:指定该损失在L1L_1L1与L2L_2L2之间变化的阈值,默认1.01.01.0
注意:
- Smooth L1损失与L1L_1L1损失类似,但是随着∣x−y∣<β|x-y|<\beta∣x−y∣<β,即随着xxx与yyy的靠近,损失形式逐渐向L2L_2L2损失的形式靠近
代码案例
一般用法
import torch.nn as nn
import torch# reduction设为none便于逐元素对比损失值
loss = nn.SmoothL1Loss(reduction='none')
x = torch.randn(10)
y = torch.randn(10)
loss_value = loss(x, y)
print(x)
print(y)
print(loss_value)
输出
# x
tensor([ 0.7584, 1.0724, 0.8966, -1.0947, -1.8141, -1.8305, -1.5329, -0.3077,0.6814, -0.2394])
# y
tensor([ 0.5081, -0.1718, 0.7817, -0.8019, -0.6405, -1.4802, 2.3039, 1.4522,1.1861, -0.2443])
# loss
tensor([3.1319e-02, 7.4427e-01, 6.6015e-03, 4.2872e-02, 6.7358e-01, 6.1354e-02,3.3368e+00, 1.2598e+00, 1.2736e-01, 1.1723e-05])
注:画图程序
import torch.nn as nn
import torch
import numpy as np
import matplotlib.pyplot as pltloss = nn.SmoothL1Loss(reduction='none')
x = torch.tensor([0]*100)
y = torch.from_numpy(np.linspace(-3,3,100))
loss_value = loss(x,y)
plt.plot(y, loss_value)
plt.savefig('SmoothL1Loss.jpg')
官方文档
nn.SmoothL1Loss:https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html#torch.nn.SmoothL1Loss
相关文章:
PyTorch学习笔记:nn.SmoothL1Loss——平滑L1损失
PyTorch学习笔记:nn.SmoothL1Loss——平滑L1损失 torch.nn.SmoothL1Loss(size_averageNone, reduceNone, reductionmean, beta1.0)功能:创建一个平滑后的L1L_1L1损失函数,即Smooth L1: l(x,y)L{l1,…,lN}Tl(x,y)L\{l_1,\dots,l…...
2年时间,涨薪20k,想拿高薪还真不能老老实实的工作...
2016年开始了我的测试生活。 2016年刚到公司的时候,我做的是测试工程师。做测试工程师是我对自己的职业规划。说实话,我能得到这份工作真的很高兴。 来公司的第一个星期,因为有一个项目缺人,所以部门经理提前结束了我的考核期&a…...
Spark - Spark SQL中RBO, CBO与AQE简单介绍
Spark SQL核心是Catalyst, Catalyst执行流程主要分4个阶段, 语句解析, 逻辑计划与优化, 物理计划与优化, 代码生成 前三个阶段都由Catalyst负责, 其中, 逻辑计划的优化采用RBO思路, 物理计划的优化采用CBO思路 RBO (Rule Based Optimization) 基于规则优化, 通过一系列预定好…...
NeurIPS/ICLR/ICML AI三大会国内高校和企业近年中稿量完整统计
点击文末公众号卡片,找对地方,轻松参会。 近日,有群友转发了一张网图,统计了近年来中国所有单位在NeurIPS、ICLR、ICML论文情况。原图如下: 中稿数100: 清华(1) 北大(2) 占比:22.6%。 累计数…...
Android IO 框架 Okio 的实现原理,到底哪里 OK?
本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。 前言 大家好,我是小彭。 今天,我们来讨论一个 Square 开源的 I/O 框架 Okio,我们最开始接触到 Okio 框架还是源于 Square 家的 OkHttp 网络…...
一文讲解Linux 设备模型 kobject,kset
设备驱动模型 面试的时候,有面试官会问,什么是Linux 设备驱动模型?你要怎么回答? 这个问题,突然这么一问,可能你会愣住不知道怎么回答,因为Linux 设备驱动模型是一个比较整体的概念࿰…...
linux配置密码过期的安全策略(/etc/login.defs的解读)
长期不更换密码很容易导致密码被破解,而linux的密码过期安全策略主要在/etc/login.defs中配置。一、/etc/login.defs文件的参数解读1、/etc/login.defs文件的内容示例[rootlocalhost ~]# cat /etc/login.defs # # Please note that the parameters in this configur…...
c_character_string 字符串----我认真的弄明白了,也希望你们也是。
字符串 1. 字符串长度strlen 1.1strlen 函数介绍 size_t strlen ( const char * str );strlen ——string length strlen 的头文件是 #include <string.h> 参数指向的字符串必须要以 ‘\0’ 结束。 strlen 是求字符串长度的函数,统计的是字符串中\0之前出现…...
spring面试题 一
一、为了降低Java开发的复杂性,Spring采取了那4种关键策略 基于POJO的轻量级和最小侵入性编程; 通过依赖注入和面向接口实现松耦合; 基于切面和惯例进行声明式编程; 通过切面和模板减少样板式代码。 二、Spring框架的核心&am…...
C++中char *,char a[ ]的特殊应用
1.数组的本质 数组是多个元素的集合,在内存中分布在地址相连的单元中,所以可以通过其下标访问不同单元的元素。 2.指针 指针也是一种变量,只不过它的内存单元中保存的是一个标识其他位置的地址。 3.字符串常量的本质是它的第一个字符的地…...
【Windows10】电脑副屏无法调节屏幕亮度?解决方法
先说下情况,本人对显示器不太懂,属于小白 这个副屏无法调节的问题出现也已经很久了,但是之前亮度适合就无所谓,今天突然按了之后很亮,于是就找问题。 第一步,我直接百度,遇事不决,百…...
Paper简读 - ProGen2: Exploring the Boundaries of Protein Language Models
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://blog.csdn.net/caroline_wendy/article/details/128976102 ProGen2: Exploring the Boundaries of Protein Language Models ProGen2:探索蛋白质语言模型的边界Cumulative density:累积密度 Ligand:在生…...
leaflet 加载WKT数据(示例代码050)
第050个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+leaflet中加载WKT文件,将图形显示在地图上。 直接复制下面的 vue+openlayers源代码,操作2分钟即可运行实现效果; 注意如果OpenStreetMap无法加载,请加载其他来练习 文章目录 示例效果配置方式示例源代码(共67行…...
设计模式-组合模式和建筑者模式详解
一. 组合模式 1. 背景 在现实生活中,存在很多“部分-整体”的关系,例如,大学中的部门与学院、总公司中的部门与分公司、学习用品中的书与书包、生活用品中的衣月艮与衣柜以及厨房中的锅碗瓢盆等。在软件开发中也是这样,例如&…...
Pcap文件的magic_number
1. 简述 pcap文件头中的magicNum是来标识pcap文件文件头和包头字节序和应用是否一致的。 在标准情况下为0xa1b2c3d4。如果相反则说明需要调换字节序。 一般格式 Global Header Packet Header Packet Data Packet Header Packet Data ....pcap文件头格式 typedef struct pca…...
MDS75-16-ASEMI三相整流模块MDS75-16
编辑-Z MDS75-16在MDS封装里采用的6个芯片,是一款工业焊机专用大功率整流模块。MDS75-16的浪涌电流Ifsm为920A,漏电流(Ir)为5mA,其工作时耐温度范围为-40~150摄氏度。MDS75-16采用GPP硅芯片材质,里面有6颗芯片组成。MDS75-16的电…...
基本TCP编程
1. 基本概念 TCP (即传输控制协议) 是一种面向连接的传输层协议,它能提供高可靠性通信 (即数据无误、数据无丢失、数据无失序、数据无重复到达的通信)。 2. 通信流程解析 TCP 通信的流程与打电话的过程相似,以下以一对情侣打电话的过程来展示TCP的通信流程: 其中服务端 …...
【沁恒WCH CH32V307V-R1开发板读取板载温度实验】
【沁恒WCH CH32V307V-R1开发板读取板载温度实验】1. 前言2. 软件配置2.1 安装MounRiver Studio3. ADC项目测试3.1 打开ADC工程3.2 编译项目4. 下载验证4.1 接线4.2 演示效果5. 小结1. 前言 ADC 模块包含 2 个 12 位的逐次逼近型的模拟数字转换器,最高 14MHz 的输入时…...
学习SpringCloudAlibaba(二)微服务的拆分与编写
目录 一、单体架构VS微服务架构 1.单体架构 (1).单体架构的优点 (2).单体架构的缺点 2.微服务架构 (1)微服务的特性 (2)微服务架构图 (3)微服务的优点 …...
通过对HashMap的源码分析解决部分关于HashMap的问题
HashMap第一次分配多大的空间我们查看resize()中的源码所以当我们没有传入默认容量的参数的时候,默认容量是16当传进一个20的初始参数时,数组的容量是多大所以当我们传入20的参数,这时创建的容量是32(2^5)对…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
