当前位置: 首页 > news >正文

基于监督学习的多模态MRI脑肿瘤分割,使用来自超体素的纹理特征(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文献


💥1 概述

由于各种肿瘤类型,在磁共振图像(MRI)中准确分割脑肿瘤是一项艰巨的任务。使用来自多模态MRI的信息和特征,包括结构MRI和来自扩散张量成像(DTI)的各向同性(p)和各向异性(q)分量,可以对大脑图像进行更准确的分析。方法:我们提出了一种新的基于3D超体素的学习方法,用于分割多模态MRI脑图像(常规MRI和DTI)中的肿瘤。超体素是使用多模态 MRI 数据集中的信息生成的。对于每个超体素,提取各种特征,包括文本描述符的直方图,使用一组具有不同大小和方向的Gabor滤波器计算,以及一阶强度统计特征。这些特征被输入到随机森林(RF)分类器中,将每个超体素分类为肿瘤核心,水肿或健康脑组织。结果:该方法在两个数据集上进行评估:1)我们的临床数据集:11张患者的多模态图像和2)BRATS 2013临床数据集:30张多模态图像。对于我们的临床数据集,使用多模态MRI检测肿瘤(包括肿瘤核心和水肿)的平均灵敏度为86%,平衡错误率(BER)为7%;而自动肿瘤分割与地面真相的骰子评分为 0.84。BRATS 2013数据集的相应结果分别为96%、2%和0.89。结论:该方法在脑肿瘤的分割中显示出有希望的结果。从多模态MRI图像中添加特征可以大大提高分割精度。该方法与所有肿瘤等级的专家描述非常匹配,从而提供了一种更快、更可重复的脑肿瘤检测和描述方法,以帮助患者管理。

📚2 运行结果

部分代码:

%% Save
% Save the supervoxel map volumes into MAT file
Output_Name = fullfile(Output_Path,['MRI_SLIC_Labels_Size',num2str(voxel_X),...'x',num2str(voxel_Y),'x',num2str(voxel_Z),'_Compactness_0',Cmpt,'_Case_',num2str(Case),'.mat']);
save (Output_Name,'SLIC_Labels_3D');%% Show the output
Slice = round(size(I,3)/2);
Image_2D = I(:,:,Slice,1);
Label1 = Label(:,:,Slice,1);
k1 = unique(Label1);
Label2 = zeros(size(Image_2D));
BW = zeros(size(Image_2D));
BW = logical(BW);
for idx = 1:numel(k1) % 1:kc_k = k1(idx);L = zeros(size(Image_2D));L(Label1==c_k)=1;BW2 = L;BW_temp = edge(BW2);Label2 = Label2+double(BW2)*c_k;BW = BW|BW_temp;
endfor P = 1:numel(ProtocolList)Image_2D = I(:,:,Slice,P);BW_Color = repmat(Image_2D,1,1,3);BW_Color = uint8(BW_Color*255);for layer = 1:2tempLayer = BW_Color(:,:,layer);tempLayer(BW) = 255;BW_Color(:,:,layer) = tempLayer;endtempLayer = BW_Color(:,:,3);tempLayer(BW) = 0;BW_Color(:,:,3) = tempLayer;figure(P);subplot(1,2,1); imshow(Image_2D,[])title(['Original: ',ProtocolList{P}])subplot(1,2,2); imshow(BW_Color,[])title('SuperVoxel')
end

%% Save
% Save the supervoxel map volumes into MAT file
Output_Name = fullfile(Output_Path,['MRI_SLIC_Labels_Size',num2str(voxel_X),...
    'x',num2str(voxel_Y),'x',num2str(voxel_Z),'_Compactness_0',Cmpt,'_Case_',num2str(Case),'.mat']);
save (Output_Name,'SLIC_Labels_3D');

%% Show the output
Slice = round(size(I,3)/2);
Image_2D = I(:,:,Slice,1);
Label1 = Label(:,:,Slice,1);
k1 = unique(Label1);
Label2 = zeros(size(Image_2D));
BW = zeros(size(Image_2D));
BW = logical(BW);
for idx = 1:numel(k1) % 1:k
    c_k = k1(idx);
    L = zeros(size(Image_2D));
    L(Label1==c_k)=1;
    BW2 = L;
    BW_temp = edge(BW2);
    Label2 = Label2+double(BW2)*c_k;
    BW = BW|BW_temp;
end

for P = 1:numel(ProtocolList)
    Image_2D = I(:,:,Slice,P);
    BW_Color = repmat(Image_2D,1,1,3);
    BW_Color = uint8(BW_Color*255);
    for layer = 1:2
        tempLayer = BW_Color(:,:,layer);
        tempLayer(BW) = 255;
        BW_Color(:,:,layer) = tempLayer;
    end
    tempLayer = BW_Color(:,:,3);
    tempLayer(BW) = 0;
    BW_Color(:,:,3) = tempLayer;
    figure(P);
    subplot(1,2,1); imshow(Image_2D,[])
    title(['Original: ',ProtocolList{P}])
    subplot(1,2,2); imshow(BW_Color,[])
    title('SuperVoxel')
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文献

相关文章:

基于监督学习的多模态MRI脑肿瘤分割,使用来自超体素的纹理特征(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

【RocketMQ】(八)Rebalance负载均衡

消费者负载均衡,是指为消费组下的每个消费者分配订阅主题下的消费队列,分配了消费队列消费者就可以知道去消费哪个消费队列上面的消息,这里针对集群模式,因为广播模式,所有的消息队列可以被消费组下的每个消费者消费不…...

线性筛和埃氏筛

线性筛&#xff1a; #define _CRT_SECURE_NO_WARNINGS #include<iostream> #include<cstdio> #include<cstdlib> #include<string> #include<cstring> #include<cmath> #include<ctime> #include<algorithm> #include<ut…...

【Java 进阶篇】JDBC ResultSet 类详解

在Java应用程序中&#xff0c;与数据库交互通常涉及执行SQL查询以检索数据。一旦执行查询&#xff0c;您将获得一个ResultSet对象&#xff0c;该对象包含查询结果的数据。本文将深入介绍ResultSet类&#xff0c;它是Java JDBC编程中的一个核心类&#xff0c;用于处理查询结果。…...

Centos7常用服务脚本(.service)

Centos7常用服务脚本&#xff08;.service&#xff09; 注意&#xff1a;[Service]中配置路径必须使用绝对路径。 启停&#xff1a; systemctl { start | stop | restart | reload } xxx.service 自启动&#xff1a; systemctl { enable | disable } xxx.service nginx.se…...

MySQL 视图View的SQL语法和更新(视图篇 二)

视图语法基本操作 创建 -- [ ]表示可选 create [or replace] view 视图名称[(列名列表)] as select语句 [ with [cascaded | local ] check option ]; 添加&#xff08;虽然视图是虚拟表&#xff0c;但是向视图操作的数据实际上会影响到实际关联的表数据&#xff09; -- 视图添…...

38 翻转二叉树

翻转二叉树 理解题意&#xff0c;翻转即每个结点的左右子树翻转/对调题解1 递归——自下而上题解2 迭代——自上而下 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 提示&#xff1a; 树中节点数目范围在 [0, 100] 内-100 < Node.…...

数据结构-快速排序-C语言实现

引言&#xff1a;快速排序作为一种非常经典且高效的排序算法&#xff0c;无论是工作还是面试中广泛用到&#xff0c;作为一种分治思想&#xff0c;需要熟悉递归思想。下面来讲讲快速排序的实现和改进。 老规矩&#xff0c;先用图解来理解一下&#xff1a;&#xff08;这里使用快…...

玩客云Armbian_23.08.0-trunk_Onecloud_bookworm_edge_6.4.14.burn配置

固定IP # interface file auto-generated by buildrootauto lo iface lo inet loopback// 上面是默认的内容,下面是新增的内容,上下之间需要一个空行隔开 // 接口顶格写,属性的前面有一个tab的缩进 # The primary network interfaceauto eth0 iface eth0 inet staticaddress 1…...

Nginx查找耗时的接口

Nginx查找耗时的接口 # grep 是筛选的域名 awk中的$5是判断的状态码 sort中的15是指的upstream_response_time 当然也可以统计request_time的时间cat access.log | grep zhhll.icu | awk $5 200{print $0} | sort -k 15 -n -r | head -10 https://zhhll.icu/2021/linux/实…...

C++ Primer 一 变量和基本类型

本章讲解C内置的数据类型&#xff08;如&#xff1a;字符、整型、浮点数等&#xff09;和自定义数据类型的机制。下一章讲解C标准库里面定义的更加复杂的数据类型&#xff0c;比如可变长字符串和向量等。 1.基本内置类型 C内置的基本类型包括&#xff1a;算术类型和空类型。算…...

实体行业数字化转型怎么做?线上线下相结合的新零售体系怎么做?

如今&#xff0c;实体行业想要取得收入增长&#xff0c;只做线下业务或者只做线上业务&#xff0c;在当前的市场环境中是难以长久生存的&#xff0c;因此一定要线上线下相结合&#xff0c;将流量运作与线下转化进行充分结合&#xff0c;才能更好地发挥实体优势&#xff0c;带来…...

JAVA面经整理(5)

创建线程池不是说现用先创建&#xff0c;而是要是可以复用线程池中的线程&#xff0c;就很好地避免了大量用户态和内核态的交互&#xff0c;不需要频繁的创建和销毁线程 一)什么是池化技术&#xff1f;什么是线程池&#xff1f; 1)池化技术是提前准备好一些资源&#xff0c;在…...

【牛客网-面试必刷TOP101】二分查找题目

目录 二维数组中的查找_牛客题霸_牛客网 (nowcoder.com) 寻找峰值_牛客题霸_牛客网 (nowcoder.com) 数组中的逆序对_牛客题霸_牛客网 (nowcoder.com) 旋转数组的最小数字_牛客题霸_牛客网 (nowcoder.com) 二维数组中的查找_牛客题霸_牛客网 (nowcoder.com) 题意&#xff1a…...

【QT】自定义组件ui类添加到主ui界面方法

1.添加自定义组件到项目中 add new选择如下 写好类方法&#xff0c;确定即可 2.将新创建的ui类加入到主ui界面 选中新创建ui类的父类空块&#xff0c;右键选择提升为 选择并添加新创建的类...

FFmpeg 多图片合成视频带字幕和音乐+特效(淡入淡出,圆圈黑色淡出)

FFmpeg 多图片合成视频带字幕和音乐+特效(淡入淡出,圆圈黑色淡出) 效果图1. 报错及解决2. xfade、xfade_opeccl 特效切换3. ffmpeg命令行详解4. 源码4.1 auto.bash4.2 geneFade.py4.3 python moviepy合并视频及音频按照(视频长度截取对应的音频在合并)4.4 命令行记录参考这…...

上网Tips: Linux截取动态效果图工具_byzanz

链接1 链接2 安装&#xff1a; sudo apt-get install byzanz 查看指令 说明 byzanz-record --help日常操作 xwininfo点击 待录制窗口 左上角 byzanz-record -x 72 -y 64 -w 1848 -h 893 -d 10 --delay5 -c /home/xixi/myGIF/test.gif小工具 获取鼠标坐标 xdotool getm…...

下载盗版网站视频并将.ts视频文件合并

. 1.分析视频请求123 2.数据获取和拼接 1.分析视频请求 1 通过抓包观察我们发现视频是由.ts文件拼接成的每一个.ts文件代表一小段2 通过观察0.ts和1.ts的url我们发现他们只有最后一段不同我们网上找到url获取的包3 我们发现index.m3u8中储存着所有的.ts文件名在拼接上前面固定…...

ElasticSearch - 基于 拼音分词器 和 IK分词器 模拟实现“百度”搜索框自动补全功能

目录 一、自动补全 1.1、效果说明 1.2、安装拼音分词器 1.3、自定义分词器 1.3.1、为什么要自定义分词器 1.3.2、分词器的构成 1.3.3、自定义分词器 1.3.4、面临的问题和解决办法 问题 解决方案 1.4、completion suggester 查询 1.4.1、基本概念和语法 1.4.2、示例…...

【kubernetes】kubernetes中的调度

1 调度过程 调度的本来含义是指决定某个任务交给某人来做的过程&#xff0c;kubernetes中的调度是指决定Pod在哪个Node上运行。 k8s的调度分为2个过程&#xff1a; 预选&#xff1a;去掉不满足条件的节点优选&#xff1a;对剩下符合条件的节点按照一些策略进行排序&#xff…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 &#xff1a;开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置&#xff0c;将微信开发者工具放入到Hbuilder中&#xff0c; 打开后出现 如下 bug 解…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...