当前位置: 首页 > news >正文

Grander因果检验(格兰杰)原理+操作+解释

笔记来源:
1.【传送门】
2.【传送门】

前沿原理介绍

Grander因果检验是一种分析时间序列数据因果关系的方法。
在这里插入图片描述
基本思想在于,在控制Y的滞后项 (过去值) 的情况下,如果X的滞后项仍然有助于解释Y的当期值的变动,则认为 X对 Y产生因果影响。

操作与解释

基于stata实现

  • 准备的数据是时间序列数据。

  • 在这里插入图片描述

  • 命令
    1.var y x,lag(1)第一步

    2.vargranger第二步
    在这里插入图片描述
    故结果是双向因果

缺陷

  • 关联与因果之间的区别: Granger因果检验只能检测到变量之间的时间序列关联关系,而不能确定这种关系的方向。即使Granger因果检验显示两个变量之间存在因果关系,这并不意味着其中一个变量的变化导致了另一个变量的变化,因为Granger因果检验无法解释这种关系的机制。

  • 滞后阶数的选择: Granger因果检验中需要选择滞后阶数(lag order),即用多少期的滞后值作为因果关系的判断依据。不同的滞后阶数可能导致不同的结果,而选择合适的滞后阶数通常需要依赖经验或其他理论依据,这可能引入主观因素。

  • 小样本效应: 在小样本情况下,Granger因果检验的统计功效较低,可能难以检测到真实的因果关系。因此,在小样本情况下,结果的解释应该更加谨慎。

  • 外生变量未控制: Granger因果检验通常假设没有未观测到的外生变量影响被考察的两个变量,如果存在未观测到的外生变量,Granger因果检验的结果可能受到影响。

  • 时间变化的影响: Granger因果检验的结果可能受到时间趋势和季节性等时间变化的影响,如果这些因素没有被适当地控制,可能导致因果关系的误判。

  • 方向性的局限性: Granger因果关系并不表示因果关系的方向。两个变量相互Granger因果并不意味着它们之间的因果关系是单向的。

  • 线性关系的假设: Granger因果检验基于线性关系的假设,可能无法捕捉非线性关系的因果关系。

相关文章:

Grander因果检验(格兰杰)原理+操作+解释

笔记来源: 1.【传送门】 2.【传送门】 前沿原理介绍 Grander因果检验是一种分析时间序列数据因果关系的方法。 基本思想在于,在控制Y的滞后项 (过去值) 的情况下,如果X的滞后项仍然有助于解释Y的当期值的变动,则认为 X对 Y产生…...

Python-Flask:编写自动化连接demo脚本:v1.0.0

主函数: # _*_ Coding : UTF-8 _*_ # Time : 13:14 # Author : YYZ # File : Flask # Project : Python_Project_爬虫 import jsonfrom flask import Flask,request,jsonify import sshapi Flask(__name__)# methods: 指定请求方式 接口解析参数host host_info[…...

kafka客户端应用参数详解

一、基本客户端收发消息 Kafka提供了非常简单的客户端API。只需要引入一个Maven依赖即可&#xff1a; <dependency><groupId>org.apache.kafka</groupId><artifactId>kafka_2.13</artifactId><version>3.4.0</version></depend…...

Apache Doris 行列转换可以这样玩

行列转换在做报表分析时还是经常会遇到的&#xff0c;今天就说一下如何实现行列转换吧。 行列转换就是如下图所示两种展示形式的互相转换 1. 行转列 我们来看一个简单的例子&#xff0c;我们要把下面这个表的数据&#xff0c;转换成图二的样式 image-20230914151818953.png …...

【Qt图形视图框架】自定义QGraphicsItem和QGraphicsView,实现鼠标(移动、缩放)及键盘事件、右键事件

自定义QGraphicsItem和QGraphicsView 说明示例myitem.hmyitem.cppmyview.hmyview.cpp调用main.cpp 效果 说明 在使用Qt的图形视图框架实现功能时&#xff0c;一般会在其基础上进行自定义功能实现。 如&#xff1a;滚轮对场景的缩放&#xff0c;鼠标拖动场景中的项&#xff0c;…...

C语言结构体指针学习

结构体变量存放内存中&#xff0c;也有起始地址&#xff0c;定义一个变量来存放这个地址&#xff0c;那这个变量就是结构体指针&#xff1b; typedef struct mydata{int a1;int a2;int a3; }mydata;void CJgtzzView::OnDraw(CDC* pDC) {CJgtzzDoc* pDoc GetDocument();ASSERT…...

华为云云耀云服务器L实例评测|部署在线轻量级备忘录 memos

华为云云耀云服务器L实例评测&#xff5c;部署在线轻量级备忘录 memos 一、云耀云服务器L实例介绍1.1 云服务器介绍1.2 产品优势1.3 应用场景1.4 支持镜像 二、云耀云服务器L实例配置2.1 重置密码2.2 服务器连接2.3 安全组配置 三、部署 memos3.1 memos介绍3.2 Docker 环境搭建…...

详解Avast Driver Updater:电脑驱动更新工具的利器还是多余的软件?

亲爱的读者朋友们&#xff0c;你是不是经常为电脑的驱动问题而烦恼&#xff1f;如果是的话&#xff0c;你可能会对这款软件——Avast Driver Updater 电脑驱动更新工具感兴趣。但在你决定尝试之前&#xff0c;不妨先和我一起深入探讨一下它的优点、缺点以及它适用的使用场景。 …...

大数据Flink(九十五):DML:Window TopN

文章目录 DML:Window TopN DML:Window TopN Window TopN 定义(支持 Streaming):Window TopN 是一种特殊的 TopN,它的返回结果是每一个窗口内的 N 个最小值或者最大值。 应用场景...

使用OKHttpClient访问网络

使用OKHttpClient前要引入依赖&#xff1a; 在build.gradle(Moduel :app)中添加 implementation com.squareup.okhttp3:okhttp:3.14.1 implementation com.squareup.okhttp3:logging-interceptor:3.14.1 implementation com.squareup.okio:okio:1.6.0 1. GET&#xff08;同步…...

maui 开发AMD CPU踩的坑。

刚换的 amd R7735HS 笔记本&#xff0c;8核16线程&#xff0c;32GB内存。性能得实强悍 。 当需要发布iOS版本时发现&#xff0c;我没有macos &#xff0c;那就安装个vmware 吧。看了一下Apple 要求以后的发布的APP需要以xcode14.3或以后版本开发的版本&#xff0c;但xcode14.3…...

宝塔反代openai官方API接口详细教程,502 Bad Gateway问题解决

一、前言 宝塔反代openai官方API接口详细教程&#xff0c;实现国内使用ChatGPT502 Bad Gateway问题解决&#xff0c; 此方法最简单快捷&#xff0c;没有复杂步骤&#xff0c;不容易出错&#xff0c;即最简单&#xff0c;零代码、零部署的方法。 二、实现前提 一台海外VPS服务…...

【leetocde】128. 最长连续序列

给定一个未排序的整数数组 nums &#xff0c;找出数字连续的最长序列&#xff08;不要求序列元素在原数组中连续&#xff09;的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例 1&#xff1a; 输入&#xff1a;nums [100,4,200,1,3,2] 输出&#xff1a;4 …...

【Vue3】动态 class 类

如果你想在 Vue.js 中动态设置元素的 class 类名&#xff0c;你可以使用以下两种主要方式&#xff1a; 绑定一个动态的 class 对象&#xff1a;你可以使用 v-bind 或简写的 : 来绑定一个包含类名的对象&#xff0c;其中类名的键是类名字符串&#xff0c;值是一个布尔值或计算属…...

【Redis】redis基本数据类型详解(String、List、Hash、Set、ZSet)

目录 RedisString(字符串)List(列表)Hash(字典)Set(集合)ZSet(有序集合) Redis Redis有5种基本的数据结构&#xff0c;分别为&#xff1a;string&#xff08;字符串&#xff09;、list&#xff08;列表&#xff09;、set&#xff08;集合&#xff09;、hash&#xff08;哈希&a…...

ubuntu源码安装aria2

github:GitHub - aria2/aria2: aria2 is a lightweight multi-protocol & multi-source, cross platform download utility operated in command-line. It supports HTTP/HTTPS, FTP, SFTP, BitTorrent and Metalink. 发行说明&#xff1a;GitHub - aria2/aria2 at releas…...

【多任务案例:猫狗脸部定位与分类】

【猫狗脸部定位与识别】 1 引言2 损失函数3 The Oxford-IIIT Pet Dataset数据集4 数据预处理4 创建模型输入5 自定义数据集加载方式6 显示一批次数据7 创建定位模型8 模型训练9 绘制损失曲线10 模型保存与预测 1 引言 猫狗脸部定位与识别分为定位和识别&#xff0c;即定位猫狗…...

.Net 锁的介绍

在.NET中,有多种锁机制可用于多线程编程,用来确保线程安全和共享资源的同步。以下是.NET中常见的锁机制: 1. **Monitor(互斥锁):** `Monitor` 是.NET中最基本的锁机制之一。它使用 `lock` 关键字实现,可以确保在同一时刻只有一个线程能够访问被锁定的代码块。`Monitor`…...

Office 2021 小型企业版商用办公软件评测:提升工作效率与协作能力的专业利器

作为一名软件评测人员&#xff0c;我将为您带来一篇关于 Office 2021 小型企业版商用办公软件的评测文章。在这篇评测中&#xff0c;我将从实用性、使用场景、优点和缺点等多个方面对该软件进行客观分析&#xff0c;在专业角度为您揭示它的真正实力和潜力。 一、实用性&#xf…...

Monkey测试

一&#xff1a;测试环境搭建 1&#xff1a;下载android-sdk_r24.4.1-windows 2&#xff1a;下载Java 3&#xff1a;配置环境变量&#xff1a;关于怎么配置环境变量&#xff08;百度一下&#xff1a;monkey环境搭建&#xff0c;&#xff09; 二&#xff1a;monkey测试&#xff1…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...