正确完成实时 AI
构建真实世界的实时 AI

一、说明
二、正确完成实时 AI:及时大规模洞察和行动
在我之前的博客文章中,我列出了当前人工智能架构的挑战以及它们对数据科学家和开发人员施加的固有限制。这些挑战阻碍了我们利用实时数据增长、满足消费者日益增长的期望、适应日益动态的市场以及提供经过验证的实时业务成果的能力。简而言之,即使人工智能带来了一些巨大的好处,但由于以下原因,它仍然不足:
- 基于广泛的人口统计数据的定向预测,无法提供改变行为和推动影响所需的洞察力。
- 批处理和历史分析无法跟上快速发展的消费者需求。
- 时间、成本和复杂性延迟了我们学习新模式和采取行动以满足不断变化的市场需求的速度。
- 团队之间缺乏可见性以及各种工具堆栈,这进一步使 AI 从业者在尝试构建提供价值的应用程序时变得复杂和延迟。
简而言之,这种将数据引入ML / AI系统的过时模型无法以企业和消费者所需的速度提供所需的结果类型。但是,有一种更好的方法可以通过 AI 提供实时影响并推动价值。
现在,让我们探讨一下组织如何超越这些限制,加入将ML引入数据的企业行列,以提供更智能的应用程序,并在确切的时间进行更准确的AI预测,从而产生最大的业务影响。
三、重新思考数据架构,利用 AI 推动影响力
借助实时 AI,开发人员现在可以构建 AI 驱动的应用程序,这些应用程序不仅可以预测行为,还可以驱动操作——在它可能产生最大影响的确切时刻。有了实时人工智能,您现在有了各种可能性——从改变个人层面的消费者行为,到洞察用户意图和背景,再到采取预防措施来保护制造正常运行时间和供应链弹性,无所不包。根据对用户的广泛人口统计理解,远离你所说的世界,这是将流失的用户百分比,并转移到一个模型,在这个模型中,你可以了解特定的个人并推动决策,在当下,增加参与度。
实现这种转变需要改变人工智能系统的构建方式。今天的大多数人工智能都是基于大量的历史数据,每天或有时每周分批收集。其结果是基于广泛的模式和人口统计数据对历史行为的后视镜观察。借助实时 AI,您可以在一系列事件展开时连接到它们,从而可以在它们发生时立即发现关键时刻、信号和结果。其结果是对消费者行为、安全威胁、系统性能等的高度个性化理解,以及干预以改变结果的能力。
例如,音乐应用程序的目标不仅仅是提供正确的内容,而是提供个性化、引人入胜的内容,让用户停留更长时间,探索新的音乐领域、新的艺术家和新的流派,并让他们如此参与,以至于他们续订了订阅。该应用程序需要的不仅仅是基于用户的历史记录,而是基于用户在积极参与时在应用程序中的意图来提供音乐。
想想那些整个早上都在听着有助于提高生产力的器乐的听众,但现在是中午,他们要去健身房。他们想要音乐来帮助激励他们。如果应用程序在用户想要锻炼碧昂斯时继续提供贝多芬,那么应用程序就达不到要求,给用户带来了搜索的负担和潜在的挫败感。
那么,当用户在应用程序中时,应用程序如何检测意图的转变呢?这可以通过实时行为和行动来揭示。可能是用户留下了他们一直在听的歌曲,并根据排名算法滚动选择,但没有进行选择。然后,用户转到应用提供的轮播之一,但同样不会选择任何选项,因为它们都是播客。也许他们会播放他们旧的锻炼播放列表中的一首歌。此外,背景很重要;它可以从诸如星期几或一天中的时间甚至用户的位置等因素中收集。现在,有了意图和上下文,实时 ML 模型可以更准确地预测当前会话中所需的内容。
部署到应用程序后,实时 AI 依赖于功能新鲜度和低延迟 - 功能更新时间以及应用程序随后可以多快采取行动。正确的基础架构消除了响应滞后,并通过实时计算这些功能来更有效地利用资源,以便仅针对活动用户进行预测。这种体验在听众需要时为他们提供了他们需要的东西,这将推动参与度和订阅续订的最终目标。
四、灵活性和响应能力
实时 AI 是为速度和规模而构建的;它能够在正确的时间在正确的基础架构上交付正确的数据。这反过来又可以在上下文中捕获机会,根据历史和实时数据训练模型,以做出更准确、更及时的决策。

在最先进的情况下,实时 AI 可以监控 ML 模型的性能。如果模型的性能下降,则会触发自动重新训练。或者,可以训练“影子”模型,如果它们开始比生产中的模型表现更好,则可以将它们换成性能不佳的模型。
实时人工智能还可以更轻松地确保所有人口统计数据得到平等对待,从而允许监控和实时调整意外后果的能力。想象一下,生产中的模型开始通过公平性和偏见测试。在实时中,企业可以将模型从生产中翻转出来,并回退到基于规则的系统或代表业务标准和准则的模型。这种方法可提供动态变化的高风险环境中所需的灵活性和响应能力。
五、减少时间、成本和复杂性
传统人工智能的主要局限性之一是与数据传输和存储相关的大量工作和成本。相比之下,将 ML 功能引入数据本身可以通过消除这些数据传输来节省时间、成本和复杂性,因为通过简化的架构,您可以获得一个环境来处理事件数据、功能和模型,从而即时大规模摄取数据。此外,通过简化复杂性并提高特征和训练数据集沿袭的可理解性,可以提高速度和生产力。换句话说,可以更清晰、更清楚地了解跨多个管道、湖泊、视图和转换所发生的情况。通过访问直接数据源,您可以加快理解速度,尤其是在提升团队或个人能力时。
由于许多客户并非每天都活跃,因此无需在整个客户群中生成每日预测,从而节省了更多的成本。例如,如果一个组织使用批处理系统,并且每天有 100,000 个活跃用户,而每月有 100 亿个活跃用户,则没有必要每晚重新评分 100 亿个客户。这样做会增加不必要的大量成本。存储这些数据所产生的成本不断增加。
重新训练模型以合并行为更改需要保留或能够重现每个训练数据集,以实现故障排除和审核。为了减少随时间推移复制和存储的数据量,每次重新训练模型时,都应该能够访问数据的原始、未转换版本,并能够使用训练期间使用的特征版本重现训练数据集。这对于批处理系统来说是非常困难的,因为数据已经经历了跨多个系统和语言的多次转换。在实时系统中,直接从原始事件中表达用于训练和生产的完整功能,可以减少通常需要存储在多个位置的所有数据的重复量。
将 AI/ML 引入数据源会创建表达转换的单一方法。您现在可以知道您已连接到正确的源,您知道这是转换的确切定义,并且您可以在几行代码中更简洁地表达数据转换中所需的内容 - 而不是管道到管道到管道,这些多次传输涉及混乱。
六、减少摩擦和焦虑
正如我在之前的博客文章中指出的那样,跨越数据、ML 和应用程序堆栈的团队成员通常无法对 ML 项目进行广泛的可见性或深入理解。这些工具根据团队成员在堆栈中的位置而有很大差异。
这些孤岛给流程注入了摩擦和混乱,并围绕诸如“这是否准备好生产了吗?“一旦我们真正投入生产,这能奏效吗?”“或者,”尽管投入了数百万美元,但这些模式是否只能产生最小的影响——远远达不到提供价值的承诺或愿景?
将 AI/ML 引入数据可实现具有一组抽象的统一接口,以支持训练和生产。相同的特征定义可以生成任意数量的训练/测试数据集,并使特征存储与新数据流保持最新。此外,使用声明性框架可以导出功能定义及其所依赖的资源定义,以将内容签入代码存储库或 CI/CD 管道,并在不同区域中使用新数据启动新环境,而无需将数据传出该区域。这使得集成最佳实践变得容易,简化了测试,并缩短了学习曲线。这也本质上降低了摩擦,提供了更高的可见性,并通过更标准化的格式,更清楚地了解特定代码集中正在发生的事情。
七、正确完成实时 AI
实时 AI 解决方案将大规模实时数据与集成机器学习整合到专为开发人员构建的完整开放数据堆栈中,这是一种新方法。正确的堆栈和正确的抽象,具有令人难以置信的前景,可以创建新一代应用程序,从而推动更准确的业务决策、预测性操作以及更具吸引力、更具吸引力的消费者体验。这有可能以一种除了少数几家企业之外所有人都无法实现的方式释放人工智能的价值和承诺。这将产生对各种形式的大规模数据的即时访问。借助集成智能,实时 AI 将为全球分布式运营、数据和用户提供时效性洞察。
在即将发布的博客文章中,我将讨论Apache Cassandra®在这个实时AI堆栈中的关键作用,以及您可以从DataStax期待的一些令人兴奋的新事物。
了解 DataStax 如何实现实时 AI。
DataStax
相关文章:
正确完成实时 AI
发表于 构建真实世界的实时 AI 一、说明 我们知道,当前的AI进展是扎根于历史数据,这就造成一个事实,模型总是赶不上实时进展,模型的洞察力不够尖锐,或者,时间损失等,本篇对这一系列AI的短板展开…...
深度学习笔记之线性代数
深度学习笔记之线性代数 一、向量 在数学表示法中,向量通常记为粗体小写的符号(例如,x,y,z)当向量表示数据集中的样本时,它们的值具有一定的现实意义。例如研究医院患者可能面临的心脏病发作风…...
Python与Scrapy:构建强大的网络爬虫
网络爬虫是一种用于自动化获取互联网信息的工具,在数据采集和处理方面具有重要的作用。Python语言和Scrapy框架是构建强大网络爬虫的理想选择。本文将分享使用Python和Scrapy构建强大的网络爬虫的方法和技巧,帮助您快速入门并实现实际操作价值。 一、Pyt…...
kind 安装 k8s 集群
在某些时候可能需要快速的部署一个k8s集群用于测试,不想部署复杂的k8s集群环境,这个时候我们就可以使用kind来部署一个k8s集群了,下面是使用kind部署的过程 一、安装单节点集群 1、下载kind二进制文件 [rootlocalhost knid]# curl -Lo ./kin…...
Leetcode 2871. Split Array Into Maximum Number of Subarrays
Leetcode 2871. Split Array Into Maximum Number of Subarrays 1. 解题思路2. 代码实现 题目链接:2871. Split Array Into Maximum Number of Subarrays 1. 解题思路 这一题实现上其实还是比较简单的,就是一个贪婪算法,主要就是思路上需要…...
Java基础---第十三篇
系列文章目录 文章目录 系列文章目录一、有数组了为什么还要搞个 ArrayList 呢?二、说说什么是 fail-fast?三、说说Hashtable 与 HashMap 的区别一、有数组了为什么还要搞个 ArrayList 呢? 通常我们在使用的时候,如果在不明确要插入多少数据的情况下,普通数组就很尴尬了,…...
Java 文档注释
Java 文档注释 目录 Java 文档注释 javadoc 标签 文档注释 javadoc输出什么 实例 Java只是三种注释方式。前两种分别是// 和/* */,第三种被称作说明注释,它以/** 开始,以 */结束。 说明注释允许你在程序中嵌入关于程序的信息。你可以使…...
【多媒体技术与实践】多媒体计算机系统概述
数码相机是利用___感受光信号, 使转换为电信号,再经模/数转换变成数字信号,存储在相机内部的存储器中。 选择一项: a. RGB b. OCR c. CCD d. MPEG 正确答案是:CCD 最基本的多媒体计算机是指安装了_部件的计算机。…...
DirectX 3D C++ 圆柱体的渲染(源代码)
作业内容 请勿抄袭 代码功能:渲染一个绕中心轴自转的圆柱体。要求该圆柱体高度为3.0,半径为0.5。 #include <windows.h> #include <d3d11.h> #include <d3dx11.h> #include <d3dcompiler.h> #include <xnamath.h> #incl…...
搭建前端框架
在终端进入web目录,然后创建vuecrud工程 创建工程并引入ElementUI和axios手把手教学>传送门:VueCLI脚手架搭建...
2310C++构造对象
原文 本文展示一个构造对象方式,用户无需显式调用构造器.对有参构造器类,该实现在构造改对象时传递默认值来构造. 当然用户也可指定(绑定)某个参数的值.实现思路参考boost-ext/di的实现.看下示例: 构 成员{整 x10; }; 构 成员1{整 x11; }; 类 例子1{ 公:例子1(成员 x,成员1 x…...
nginx多文件组织
背景: nginx的话,有时候,想部署多个配置,比如:使用不同的端口配置不同的web工程。 比如:8081部署:项目1的web页面。 8082部署:项目2的web页面。 1)nginx.conf worker_processes…...
扩容LVM卷导致lvm元数据丢失的恢复过程
一、问题描述 因某次MySQL binlog占用过高扩容时,是直接对云盘操作,而扩容直接操作了lvm卷而未操作云盘分区,并随后执行了扩容的partprobe,resize2fs卷等操作;最后,显示并未扩容成功,重启系统后…...
【MySQL教程】| (1-1) 2023MySQL-8.1.0 安装教程
文章目录 一、安装包下载二、安装配置1、解压安装包2、编写MySQL配置文件3、初始化MySQL数据库3、安装mysql服务并启动4、MySQL服务5、连接MySQL6、修改密码 三、配置环境变量四、防止mysql自启动拖慢开机时间 近日有粉丝问到mysql在win11的安装中遇到一些问题,应粉…...
数据大屏定时请求后端数据
需求: 因为大屏基本从上午展示到晚上,不会频繁去打开页面。 前端实现: 在Vue的created钩子函数中发送初次请求,并使用JavaScript中的setInterval函数来设置整点定时发送请求。以下是一个示例 <template><div><h1…...
数据结构--队列
一、队列是什么 队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,队列是一种操作受限制的线性表。进行插入操作的端称为队尾&…...
Python绘图系统25:新增8种绘图函数
文章目录 常用绘图函数单选框的更改逻辑源代码 Python绘图系统: 前置源码: Python打造动态绘图系统📈一 三维绘图系统 📈二 多图绘制系统📈三 坐 标 轴 定 制📈四 定制绘图风格 📈五 数据生成导…...
(二) gitblit用户使用教程
(一)gitblit安装教程 (二) gitblit用户使用教程 (三) gitblit管理员手册 目录 网页访问git客户端设置推送错误配置查看当前配置 日常使用仓库分组my profile修改上传代码简洁 网页访问 点击Advanced... 点击Accept the Risk and Contiue 初始用户名和密码都是admin,点击login…...
8.3Jmeter使用json提取器提取数组值并循环(循环控制器)遍历使用
Jmeter使用json提取器提取数组值并循环遍历使用 响应返回值例如: {"code":0,"data":{"totalCount":11,"pageSize":100,"totalPage":1,"currPage":1,"list":[{"structuredId":&q…...
SNERT预备队招新CTF体验赛-Misc(SWCTF)
目录 1、最简单的隐写 2、旋转我 3、is_here 4、zip伪加密 5、压缩包密码爆破 6、我就藏在照片里 7、所以我放弃了bk 8、套娃 9、来自银河的信号 10、Track_Me 11、勇师傅的奇思妙想 1、最简单的隐写 下载附件后,图片格式并不支持打开 根据题目提示&…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
