【算法与数据结构(C语言)】栈和队列
文章目录
目录
前言
一、栈
1.栈的概念及结构
2.栈的实现
入栈
出栈
获取栈顶元素
获取栈中有效元素个数
检测栈是否为空,如果为空返回非零结果,如果不为空返回0
销毁栈
二、队列
1.队列的概念及结构
2.队列的实现
初始化队列
队尾入队列
队头出队列
获取队列队头元素
获取队列队尾元素
获取队列中有效元素个数
检测队列是否为空,如果为空返回非零结果,如果非空返回0
销毁队列
最后
前言
本篇文章内容讲述了栈和队列的概念结构、分类与函数声明部分,以及对于各个函数的实现。
以下内容仅供参考,欢迎各位大佬批评指正呦~
提示:以下是本篇文章正文内容,下面案例可供参考

一、栈
1.栈的概念及结构
栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端 称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。 压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。 出栈:栈的删除操作叫做出栈。出数据也在栈顶。
2.栈的实现
栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的 代价比较小。
// 下面是定长的静态栈的结构,实际中一般不实用,所以我们主要实现下面的支持动态增长的栈
typedef int STDataType;
#define N 10
typedef struct Stack
{STDataType a[N];int _top; // 栈顶
}ST;// 支持动态增长的栈
typedef int STDataType;
typedef struct Stack
{STDataType* a;int top; // 栈顶int capacity; // 容量
}ST;// 初始化栈
void StackInit(ST* ps); // 入栈
void StackPush(ST* ps, STDataType x); // 出栈
void StackPop(ST* ps); // 获取栈顶元素
STDataType StackTop(ST* ps); // 获取栈中有效元素个数
int StackSize(ST* ps); // 检测栈是否为空,如果为空返回非零结果,如果不为空返回0
int StackEmpty(ST* ps); // 销毁栈
void StackDestroy(ST* ps);
初始化栈
void StackInit(ST* ps) {assert(ps);ps->a = (STDatatype)malloc(sizeof(STDatatype) * 4);if (ps->a == NULL){perror("malloc fail");exit(-1);}ps->top = 0;ps->capacity = 4; }
入栈
void StackPush(ST* ps, STDatatype x) {assert(ps);if (ps->top == ps->capacity){STDatatype* tmp = (STDatatype*)realloc(ps->a,ps->capacity*2*sizeof(STDatatype));if (tmp == NULL){perror("realloc fail");exit(-1);}ps->a = tmp;ps->capacity *= 2;}ps->a[ps->top] = x;ps->top++;}
出栈
void StackPop(ST* ps) {assert(ps);assert(!StackEmpty(ps));ps->top--; }
获取栈顶元素
STDatatype StackTop(ST* ps) {assert(ps);assert(!StackEmpty(ps));return ps->a[ps->top - 1]; }
获取栈中有效元素个数
int StackSize(ST* ps) {assert(ps);return ps->top; }
检测栈是否为空,如果为空返回非零结果,如果不为空返回0
bool StackEmpty(ST* ps) {assert(ps);return ps->top == 0; }
销毁栈
void StackDestory(ST* ps) {assert(ps);free(ps->a);ps->a = NULL;ps->top = ps->capacity = 0; }
二、队列
1.队列的概念及结构
队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出 FIFO(First In First Out) 入队列:进行插入操作的一端称为队尾 出队列:进行删除操作的一端称为队头
2.队列的实现
队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数 组头上出数据,效率会比较低。
// 链式结构:表示队列
typedef int QDataType;
typedef struct QueueNode
{QDataType data;struct QueueNode* next;
}QNode;// 队列的结构
typedef struct Queue
{ QNode* head;QNode* tail;int size;
}Queue; // 初始化队列
void QueueInit(Queue* pq); // 队尾入队列
void QueuePush(Queue* pq, QDataType data); // 队头出队列
void QueuePop(Queue* pq); // 获取队列头部元素
QDataType QueueFront(Queue* pq); // 获取队列队尾元素
QDataType QueueBack(Queue* pq); // 获取队列中有效元素个数
int QueueSize(Queue* pq); // 检测队列是否为空,如果为空返回非零结果,如果非空返回0
int QueueEmpty(Queue* pq); // 销毁队列
void QueueDestroy(Queue* pq);
初始化队列
void QueueInit(Queue* pq) {assert(pq);pq->head = NULL;pq->tail = NULL;pq->size = 0; }
队尾入队列
void QueuePush(Queue* pq, QDataType x) {assert(pq);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc fail");exit(-1);}newnode->data = x;newnode->next = NULL;if (pq->tail == NULL){pq->head = pq->tail = newnode;}else{pq->tail->next = newnode;pq->tail = newnode;}pq->size++; }
队头出队列
void QueuePop(Queue* pq) {assert(pq);assert(!QueueEmpty(pq));if (pq->head->next == NULL){free(pq->head);pq->head = pq->tail = NULL;}else{QNode* del = pq->head;pq->head = pq->head->next;free(del);}pq->size--; }
获取队列队头元素
QDataType QueueFront(Queue* pq) {assert(pq);assert(!QueueEmpty(pq));return pq->head->data; }
获取队列队尾元素
QDataType QueueBack(Queue* pq) {assert(pq);assert(!QueueEmpty(pq));return pq->tail->data; }
获取队列中有效元素个数
int QueueSize(Queue* pq) {assert(pq);return pq->size; }
检测队列是否为空,如果为空返回非零结果,如果非空返回0
bool QueueEmpty(Queue* pq) {assert(pq);return pq->head == NULL && pq->tail == NULL; }
销毁队列
void QueueDestroy(Queue* pq) {assert(pq);QNode* cur = pq->head;while (cur){QNode* del = cur;cur = cur->next;free(del);//del = NULL;}pq->head = pq->tail = NULL;pq->size = 0; }
最后
快乐的时光总是短暂的,以上就是今天要讲的内容,本文介绍了小赵同志对算法与数据结构(C语言)的栈和队列的初步认知以及实现。欢迎家人们批评指正。小赵同志继续更新,不断学习的动力是宝子们一键三连的支持呀~

相关文章:
【算法与数据结构(C语言)】栈和队列
文章目录 目录 前言 一、栈 1.栈的概念及结构 2.栈的实现 入栈 出栈 获取栈顶元素 获取栈中有效元素个数 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 销毁栈 二、队列 1.队列的概念及结构 2.队列的实现 初始化队列 队尾入队列 队头出队列 获…...
Uni-app使用vant和uview组件
目录 1.安装vant组件 1.1安装前需知 1.2.安装 1.3.创建uni-app项目 2.安装uview-ui组件 2.1官网 2.2安装 2.3安装成功 1.安装vant组件 1.1安装前需知 小程序能使用vant-weapp组件,且官网的安装是直接导入小程序中,不能直接导入uni-app框架中 V…...
2023年PMP考试应该注意些什么?
首先注意(报考条件) 2023年PMP考试报名流程: 一、PMP英文报名: 英文报名时间无限制,随时可以报名,但有一年的有效期,所以大家尽量提前报名,在英文报名有效期内进行中文报名。 英…...
selenium环境安装及使用
selenium简介官网https://www.selenium.dev简介用于web浏览器测试的工具支持的浏览器包括IE,Firefox,Chrome,edge等使用简单,可使用java,python等多种语言编写用例脚本主要由三个工具构成,webdriver,IDE,web自动化环境…...
高性能低功耗4口高速USB2.0 HUB 完美替代FE1.1S和FE8.1
该NS1.1s是一个高度集成的,高品质,高性能,低功耗,为USB 2.0高速4端口集线器又低成本的解决方案。 (点击即可咨询芯片详细信息) NS1.1s的特点 1.通用串行总线规范修订版2.0(USB 2.0)完…...
Go全栈学习(一)基础语法
Go语言基础语法 文章目录Go语言基础语法注释变量变量的定义变量的交换理解变量(内存地址)匿名变量变量的作用域常量2023.2.4日 总结// 关于Goland 中 执行的问题// 1、包下执行 (一个 main 函数来执行,如果有多个,无法…...
centos7搭建svn配置
基本概述 Apache Subversion(简称SVN,svn),一个开放源代码的版本控制系统,相较于RCS、CVS,它采用了分支管理系统,它的设计目标就是取代CVS。互联网上很多版本控制服务已从CVS转移到Subversion。…...
趣味三角——第12章——tanx
第12章节 tanx In his very numerous memoires, and especially in his great work, Introductio in analysin infinitorum (1748), Euler displayed the most wonderful skill in obtaining a rich harvest of results of great interest. . . . Hardly any other work …...
Java - 数据结构,栈
一、栈 1.1、什么是栈 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈 顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。 压…...
某餐厅系统网络故障分析案例
背景 针对食堂经营企业,某堂食软件为客户提供优化堂食就餐流程、提高食堂服务水平和管理效率。 某上海客户使用该堂食系统,在就餐高峰时段,总是出现支付、点餐等操作缓慢,动辄一个操作需要等待几十秒。该客户联系软件厂商&#…...
华为OD机试题,用 Java 解【密室逃生游戏】问题
最近更新的博客 华为OD机试 - 猴子爬山 | 机试题算法思路 【2023】华为OD机试 - 分糖果(Java) | 机试题算法思路 【2023】华为OD机试 - 非严格递增连续数字序列 | 机试题算法思路 【2023】华为OD机试 - 消消乐游戏(Java) | 机试题算法思路 【2023】华为OD机试 - 组成最大数…...
如何重命名SQL Server数据库
重命名SQL Server数据库 使用T-SQL重命名SQL Server数据库使用分离和附加重命名SQL Server数据库使用T-SQL查询分离和重新连接在SSMS中分离和重新连接通过SSMS重命名SQL Server数据库当使用SQL数据库很长一段时间时,你可能会遇到需要为数据库命名的情况。它可以用几种不同的方…...
联想昭阳E5-ITL电脑开机后绿屏怎么U盘重装系统?
联想昭阳E5-ITL电脑开机后绿屏怎么U盘重装系统?有用户电脑正常开机之后,出现了屏幕变成绿屏,无法进行操作的情况。这个问题是系统出现了问题,那么如何去进行问题的解决呢?接下来我们一起来分享看看如何使用U盘重装电脑…...
车载开发知识交流【学习路线】
前言 在2023国内百废待兴;经济复苏的号召一直在响应,这对于压抑了三年的人民来说无疑是福音。这篇我们主要说一下拉动经济的其中大板块——车企;我们知道我们最大的经济除了房地产,第二就是车企。而在造车领域中也不断的加入了许…...
【读书笔记】《深入浅出数据分析》第二章 检验你的理论
文章目录一,相关分析方法1,相关系数二,相关性不等于因果关系三,证明因果关系,“控制变量法”?本章主要说明了两个问题: 1,相关性不等于因果关系 2,如何判断两种数据之间是相关性&am…...
pyflink学习笔记(一):table_apisql
具体定义请参考官方文档:https://nightlies.apache.org/flink/flink-docs-release-1.16/zh/docs/dev/table/overview/本文主要针对实际使用中比较常用的api进行整理,大多数例子都是官网,如有歧义可与官方对照。一、 创建 TableEnvironmentTab…...
GCC 编译器套件说明
写在前面: 本文章旨在总结备份、方便以后查询,由于是个人总结,如有不对,欢迎指正;另外,内容大部分来自网络、书籍、和各类手册,如若侵权请告知,马上删帖致歉。 目录GCC 简述GCC 主要…...
IDEA集成Git
1:IDEA集合Git1.1:配置Git忽略文件-IDEA特定文件问题 1:为什么要忽略他们?答: 与项目的实际功能无关, 不参与服务器上部署运行。把它们忽略掉能够屏蔽 IDE 工具之间的差异。问题 2:怎么忽略?1&a…...
算法流程图
里程计定位: 优:定位信息连续,无离散的跳跃 缺:存在累计误差,不利于长距或长期定位 传感器定位: 优:比里程计定位更精准 缺:会出现跳变情况,且传感器定位在标志物较少的环…...
Java中安装JDK环境–javac命令无效
Java中安装JDK环境–javac命令无效 一,安装JDK1.8 阿里云盘地址推荐 我们可以选择安装地址,这个地址是我们用来配置环境变量的,唯一注意的是这个,其他的都是默认下一步。直至安装完成,jdk下载地址https://www.oracl…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
第三周 Day 3 🎯 今日目标 理解类(class)和对象(object)的关系学会定义类的属性、方法和构造函数(init)掌握对象的创建与使用初识封装、继承和多态的基本概念(预告) &a…...
针对药品仓库的效期管理问题,如何利用WMS系统“破局”
案例: 某医药分销企业,主要经营各类药品的批发与零售。由于药品的特殊性,效期管理至关重要,但该企业一直面临效期问题的困扰。在未使用WMS系统之前,其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...
HTML中各种标签的作用
一、HTML文件主要标签结构及说明 1. <!DOCTYPE html> 作用:声明文档类型,告知浏览器这是 HTML5 文档。 必须:是。 2. <html lang“zh”>. </html> 作用:包裹整个网页内容,lang"z…...
第22节 Node.js JXcore 打包
Node.js是一个开放源代码、跨平台的、用于服务器端和网络应用的运行环境。 JXcore是一个支持多线程的 Node.js 发行版本,基本不需要对你现有的代码做任何改动就可以直接线程安全地以多线程运行。 本文主要介绍JXcore的打包功能。 JXcore 安装 下载JXcore安装包&a…...
智能体革命:企业如何构建自主决策的AI代理?
OpenAI智能代理构建实用指南详解 随着大型语言模型(LLM)在推理、多模态理解和工具调用能力上的进步,智能代理(Agents)成为自动化领域的新突破。与传统软件仅帮助用户自动化流程不同,智能代理能够自主执行工…...
