格点数据可视化(美国站点的日降雨数据)
获取美国站点的日降雨量的格点数据,并且可视化

导入模块
from datetime import datetime, timedelta
from urllib.request import urlopenimport cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
from metpy.units import masked_array, units
from netCDF4 import Dataset
读取数据
nc = Dataset('20200309_conus.nc')
prcpvar = nc.variables['observation']
data = masked_array(prcpvar[:], units(prcpvar.units.lower())).to('mm')
x = nc.variables['x'][:]
y = nc.variables['y'][:]
proj_var = nc.variables[prcpvar.grid_mapping]
设置投影
globe = ccrs.Globe(semimajor_axis=proj_var.earth_radius)
proj = ccrs.Stereographic(central_latitude=90.0,central_longitude=proj_var.straight_vertical_longitude_from_pole,true_scale_latitude=proj_var.standard_parallel, globe=globe)
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(1, 1, 1, projection=proj)# 绘制海岸线、国界线、州界线
ax.coastlines()
ax.add_feature(cfeature.BORDERS)
ax.add_feature(cfeature.STATES)# 设置降雨量等级间隔
clevs = [0, 1, 2.5, 5, 7.5, 10, 15, 20, 30, 40,50, 70, 100, 150, 200, 250, 300, 400, 500, 600, 750]
# In future MetPy
# norm, cmap = ctables.registry.get_with_boundaries('precipitation', clevs)
# 单独设置cmap
cmap_data = [(1.0, 1.0, 1.0),(0.3137255012989044, 0.8156862854957581, 0.8156862854957581),(0.0, 1.0, 1.0),(0.0, 0.8784313797950745, 0.501960813999176),(0.0, 0.7529411911964417, 0.0),(0.501960813999176, 0.8784313797950745, 0.0),(1.0, 1.0, 0.0),(1.0, 0.6274510025978088, 0.0),(1.0, 0.0, 0.0),(1.0, 0.125490203499794, 0.501960813999176),(0.9411764740943909, 0.250980406999588, 1.0),(0.501960813999176, 0.125490203499794, 1.0),(0.250980406999588, 0.250980406999588, 1.0),(0.125490203499794, 0.125490203499794, 0.501960813999176),(0.125490203499794, 0.125490203499794, 0.125490203499794),(0.501960813999176, 0.501960813999176, 0.501960813999176),(0.8784313797950745, 0.8784313797950745, 0.8784313797950745),(0.9333333373069763, 0.8313725590705872, 0.7372549176216125),(0.8549019694328308, 0.6509804129600525, 0.47058823704719543),(0.6274510025978088, 0.42352941632270813, 0.23529411852359772),(0.4000000059604645, 0.20000000298023224, 0.0)]cmap = mcolors.ListedColormap(cmap_data, 'precipitation')
norm = mcolors.BoundaryNorm(clevs, cmap.N)cs = ax.contourf(x, y, data, clevs, cmap=cmap, norm=norm)# 添加colorbar
cbar = plt.colorbar(cs, orientation='horizontal')
cbar.set_label(data.units)
# 设置标题
ax.set_title(prcpvar.long_name + ' for period ending ' + nc.creation_time)
plt.show()
数据怎样获取
dt = datetime.utcnow() - timedelta(days=1) # 获取过去1天的时间
url = ('http://water.weather.gov/precip/downloads/{dt:%Y/%m/%d}/nws_precip_1day_''{dt:%Y%m%d}_conus.nc'.format(dt=dt))
data = urlopen(url).read()
nc = Dataset('data', memory=data)
显示数据
import xarray as xr
from xarray.backends import NetCDF4DataStore
data = xr.open_dataset(NetCDF4DataStore(nc))
data
保存为nc数据
data.to_netcdf('{dt:%Y%m%d}_conus.nc'.format(dt=dt),'w')
相关文章:
格点数据可视化(美国站点的日降雨数据)
获取美国站点的日降雨量的格点数据,并且可视化 导入模块 from datetime import datetime, timedelta from urllib.request import urlopenimport cartopy.crs as ccrs import cartopy.feature as cfeature import matplotlib.colors as mcolors import matplotli…...
YoloV8改进策略:LSKNet加入到YoloV8中,打造更适合小目标的YoloV8
文章目录 摘要论文:LSKNet:大选择核网络在遥感目标检测中的应用1、简介2、相关工作2.1、遥感目标检测框架2.2、大核网络2.3、注意力/选择机制3、方法3.1、LSKNet架构3.2、大核卷积3.3、空间核选择4、实验4.1、数据集4.2、实现细节4.3、消融实验4.4、主要结果4.5、分析5、结论…...
力扣-303.区域和检索-数组不可变
Idea 需计算数组nums在下标right 和 left-1 的前缀和,然后计算两个前缀和的差即可。 需要注意的是,当left为0的时候,如果还是left-1则会发生数组访问越界错误。 AC Code class NumArray { public:vector<int> sum;NumArray(vector<…...
web:[极客大挑战 2019]LoveSQL
题目 打开页面显示如下 查看源代码,查到一个check.php,还是get传参 尝试账号密码输入 题目名为sql,用万能密码 1or 11# 或 admin or 11 给了一段乱码,也不是flag 查看字段数 /check.php?usernameadmin order by 3%23&pass…...
数据结构—快速排序(续)
引言:在上一篇中我们详细介绍了快速排序和改进,并给出了其中的一种实现方式-挖坑法 但其实快速排序有多种实现方式,这篇文章再来介绍其中的另外两种-左右指针法和前后指针法。有了上一篇挖坑法的启示,下面的两种实现会容易许多。 …...
Snapdragon Profiler分析Android GPU
Snapdragon Profiler(骁龙分析器)是一款性能分析软件,在Windows、 Mac、和 Linux平台上都可以运行,主要是用来分析使用了高通骁龙处理器的Android设备。 Snapdragon Profiler通过USB连接这些Android设备,开发者可以用…...
Cannot download sources:IDEA源码无法下载
问题 Swagger的相关包,无法看到注释; 在class文件的页面,点击下载源码,源码下载不了,IDEA报下面的错误。 报错 Cannot download sources Sources not found for: io.swagger.core.v3:swagger-annotations:2.2.9 解决…...
从零开始学习 Java:简单易懂的入门指南之IO字符流(三十一)
IO流之字符流 1. 字符流1.1 字符输入流【Reader】1.2 FileReader类构造方法读取字符数据 1.3 字符输出流【Writer】1.4 FileWriter类构造方法基本写出数据关闭和刷新写出其他数据 2. IO异常的处理JDK7前处理JDK7的处理JDK9的改进 3. 综合练习练习1:拷贝文件夹练习2&…...
监狱工具管理系统-监狱劳动工具管理系统
监狱劳动工具管理系统(智工具DW-S308)是依托互3D技术、云计算、大数据、RFID技术、数据库技术、AI、视频分析技术对工具进行统一管理、分析的信息化、智能化、规范化的系统。 当前各级监狱工器具管理更多的是借助于传统的人工管理方法和手段,数据的采集和录入一直以…...
蓄水池算法
题目: 假设有一组数据流元素有 N 个(事先不知道 N 具体值),我们希望选择 n 个样本(N > n),使用怎样的策略进行抽样可以使得数据流中每个元素被选择的概率恰为 n / N 结论: 创建大…...
作业 day4
完成父子进程通信...
erlang练习题(四)
题目一 传入列表 L1[K|]、L2[V|]、L3[{K,V}|_],L1和L2一一对应,L1为键列表,L2为值列表,L3为随机kv列表, 将L1和L2对应位合并成KV列表L4,再将L3和L4相加,相同key的value相加 如:L…...
YoloV5实时推理最短的代码
YoloV5实时推理最简单代码 import cv2 import torch# 加载YOLOv5模型 model torch.hub.load(ultralytics/yolov5, yolov5s)# 使用CPU或GPU进行推理 device cuda if torch.cuda.is_available() else cpu model.to(device)# 打开摄像头(默认摄像头) cap…...
Tensorflow、Pytorch和Ray(张量,计算图)
1.深度学习框架(Tensorflow、Pytorch) 1.1由来 可以追溯到2016年,当年最著名的事件是alphago战胜人类围棋巅峰柯洁,在那之后,学界普遍认为人工智能已经可以在一些领域超过人类,未来也必将可以在更多领域超过…...
TinyWebServer学习笔记-让程序跑起来
目标:通过这个HTTP项目熟悉网络编程 系统:Ubuntu20.04 首先,学习的第一步就是先让程序跑起来,使用git将项目下载到虚拟机内: git clone https://github.com/qinguoyi/TinyWebServer.git 提前把MySQL数据库安装好&am…...
_tkinter.TclError: no display name and no $DISPLAY environment variable 解决
启动kohya_ss时可能会发生错误: _tkinter.TclError: no display name and no $DISPLAY environment variable 解决办法: 1、apt-get install xvfb //安装xvfb // 启动虚拟显示器 2、Xvfb :99 -screen 0 1024x768x16 & export DISPLAY:99 ps aux…...
我出手了!
时光飞逝,程序员小灰这个微信公众号,已经运营整整7年时间了。 在这7年里,小灰输出过各种各样的文章和视频,有讲编程技术的,有讲职业规划的,有讲互联网行业新闻的,也有讲自己个人生活的。 不过&a…...
springboot的配置文件(properties和yml/yaml)
springboot的配置文件有两种格式分别是properties和yml/yaml 创建配置文件 在创建springboot项目时候,会默认生成application.properties这种格式 书写风格 端口 application.propertis server.port8080 application.yml server:port: 8080 连接数据库 applica…...
SLAM面试笔记(7) — Linux面试题
目录 问题1:Linux系统基本组件? 问题2:Linux和Unix有什么区别? 问题3:Linux下编译程序 问题4:gcc基本格式和常用指令 问题5:用什么命令查找内存和交换使用情况? 问题6…...
QUIC不是TCP的替代品
QUIC取代了TCP成为HTTP3的基础传输协议,不是因为QUIC能够取代TCP的所有应用场景,而是因为QUIC更适合HTTP的请求/响应业务模型。原文: QUIC Is Not a TCP Replacement TCP新规范(RFC 9293)的发布是网络界的一件大事,值得围绕这一主题发表第二篇…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
省略号和可变参数模板
本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...
