蓄水池算法
题目:
假设有一组数据流元素有 N 个(事先不知道 N 具体值),我们希望选择 n 个样本(N >= n),使用怎样的策略进行抽样可以使得数据流中每个元素被选择的概率恰为 n / N
结论:
创建大小为n的容器,先把前n个放进去,然后第i个(从n+1开始)有n/i的概率保留,随机和n个已保留的元素之一交换,有1-n/i的概率舍弃
证明:
1.数学归纳法:
①当N=n时,每个样本都选择概率都为n/N,显然成立。
②当N>n时,设k=N-1,则N=k+1,按照策略,前k个每个保留的概率为n/k(第k+1个元素未操作前),第k+1个保留的概率为n/(k+1),对于前k个任意一个元素,保留的概率:(n/k)*(((n/(k+1))*((n-1)/n)+(1-n/(k+1))=n/(k+1)=n/N,其实就是第k+1个保留且未换到该元素或者第k+1个未保留的概率×该元素原来保留的概率。
③所以当N>=n时,每个样本选择概率都为n/N。
2.分类推理法:
按照该策略,对于前n个元素,第i个(i>n)个元素后还保留的概率为(n/i)*((n-1)/n)+(i-n)/i=(i-1)/i
那么到第N个元素还保留的概率:1*(n/(n+1)*((n+1)/(n+2))*...*(N-1)/N=n/N
那么对于第i个元素(i>n)最后保留的概率,(n/i)*(i/(i+1)*...*(N-1)/N=n/N
所以对于所有元素,选择概率都为n/N
代码实现:
import randomdef reservoir_sampling(stream, k):reservoir = []# 填充蓄水池,取前k个元素for i in range(k):reservoir.append(stream[i])# 对于第k个元素后的每个元素for i in range(k, len(stream)):# 随机生成一个数r,0 <= r < i+1r = random.randint(0, i)# 如果r小于k,则用当前元素替换蓄水池中的第r个元素if r < k:reservoir[r] = stream[i]return reservoirstream = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] k = 4 reservoir = reservoir_sampling(stream, k) print(reservoir) # 输出蓄水池中的抽样结果
相关文章:
蓄水池算法
题目: 假设有一组数据流元素有 N 个(事先不知道 N 具体值),我们希望选择 n 个样本(N > n),使用怎样的策略进行抽样可以使得数据流中每个元素被选择的概率恰为 n / N 结论: 创建大…...

作业 day4
完成父子进程通信...
erlang练习题(四)
题目一 传入列表 L1[K|]、L2[V|]、L3[{K,V}|_],L1和L2一一对应,L1为键列表,L2为值列表,L3为随机kv列表, 将L1和L2对应位合并成KV列表L4,再将L3和L4相加,相同key的value相加 如:L…...

YoloV5实时推理最短的代码
YoloV5实时推理最简单代码 import cv2 import torch# 加载YOLOv5模型 model torch.hub.load(ultralytics/yolov5, yolov5s)# 使用CPU或GPU进行推理 device cuda if torch.cuda.is_available() else cpu model.to(device)# 打开摄像头(默认摄像头) cap…...

Tensorflow、Pytorch和Ray(张量,计算图)
1.深度学习框架(Tensorflow、Pytorch) 1.1由来 可以追溯到2016年,当年最著名的事件是alphago战胜人类围棋巅峰柯洁,在那之后,学界普遍认为人工智能已经可以在一些领域超过人类,未来也必将可以在更多领域超过…...
TinyWebServer学习笔记-让程序跑起来
目标:通过这个HTTP项目熟悉网络编程 系统:Ubuntu20.04 首先,学习的第一步就是先让程序跑起来,使用git将项目下载到虚拟机内: git clone https://github.com/qinguoyi/TinyWebServer.git 提前把MySQL数据库安装好&am…...
_tkinter.TclError: no display name and no $DISPLAY environment variable 解决
启动kohya_ss时可能会发生错误: _tkinter.TclError: no display name and no $DISPLAY environment variable 解决办法: 1、apt-get install xvfb //安装xvfb // 启动虚拟显示器 2、Xvfb :99 -screen 0 1024x768x16 & export DISPLAY:99 ps aux…...

我出手了!
时光飞逝,程序员小灰这个微信公众号,已经运营整整7年时间了。 在这7年里,小灰输出过各种各样的文章和视频,有讲编程技术的,有讲职业规划的,有讲互联网行业新闻的,也有讲自己个人生活的。 不过&a…...

springboot的配置文件(properties和yml/yaml)
springboot的配置文件有两种格式分别是properties和yml/yaml 创建配置文件 在创建springboot项目时候,会默认生成application.properties这种格式 书写风格 端口 application.propertis server.port8080 application.yml server:port: 8080 连接数据库 applica…...

SLAM面试笔记(7) — Linux面试题
目录 问题1:Linux系统基本组件? 问题2:Linux和Unix有什么区别? 问题3:Linux下编译程序 问题4:gcc基本格式和常用指令 问题5:用什么命令查找内存和交换使用情况? 问题6…...
QUIC不是TCP的替代品
QUIC取代了TCP成为HTTP3的基础传输协议,不是因为QUIC能够取代TCP的所有应用场景,而是因为QUIC更适合HTTP的请求/响应业务模型。原文: QUIC Is Not a TCP Replacement TCP新规范(RFC 9293)的发布是网络界的一件大事,值得围绕这一主题发表第二篇…...

计算机竞赛 目标检测-行人车辆检测流量计数
文章目录 前言1\. 目标检测概况1.1 什么是目标检测?1.2 发展阶段 2\. 行人检测2.1 行人检测简介2.2 行人检测技术难点2.3 行人检测实现效果2.4 关键代码-训练过程 最后 前言 🔥 优质竞赛项目系列,今天要分享的是 行人车辆目标检测计数系统 …...

GPT系列模型解读:GPT-1
GPT系列 GPT(Generative Pre-trained Transformer)是一系列基于Transformer架构的预训练语言模型,由OpenAI开发。以下是GPT系列的主要模型: GPT:GPT-1是于2018年发布的第一个版本,它使用了12个Transformer…...
王杰国庆作业day3
父子进程对话 #include <stdio.h> #include <string.h> #include <stdlib.h> #include <my_head.h> int main(int argc, const char *argv[]) {mkfifo("./fifo1",0664);mkfifo("./fifo2",0664);pid_t cpid fork();if(0 < cp…...

量子计算基础知识—Part1
1.什么是量子计算机? 量子计算机是基于量子力学原理构建的机器,采用了一种新的方法来处理信息,从而使其具有超强的功能。量子计算机使用Qubits处理信息。 2. 什么是量子系统? 一个量子系统指的是由量子力学规则描述和控制的物理…...

【PostgreSQL】【存储管理】表和元组的组织方式
外存管理负责处理数据库与外存介质(PostgreSQL8.4.1版本中只支持磁盘的管理操作)的交互过程。在PostgreSQL中,外存管理由SMGR(主要代码在smgr.c中)提供了对外存的统一接口。SMGR负责统管各种介质管理器,会根据上层的请求选择一个具体的介质管理器进行操作…...

VSCode安装图文详解教程
版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl 教程说明 本教程旨在详细介绍VSCode的安装过程及其注意事项。 下载VSCode 请在官方网站 https://code.visualstudio.com/ 下载https://code.visualstudio.com/至本地&…...

vscode 无法打开源文件
以下是c/c插件的intelligense设置情况: 解决办法: 重新安装vsode无用;重新下载mingw64,管用了!(我猜可能是之前换电脑移植文件的时候导致了部分文件丢失)...

1.8.C++项目:仿muduo库实现并发服务器之eventloop模块的设计
项目完整在: 文章目录 一、eventloop模块:进行事件监控,以及事件处理的模块二、提供的功能三、实现思想(一)功能(二)意义(三)功能设计 四、框架五、代码 一、eventloop模…...

Linux基本指令(二)
💓博主个人主页:不是笨小孩👀 ⏩专栏分类:数据结构与算法👀 C👀 刷题专栏👀 C语言👀 🚚代码仓库:笨小孩的代码库👀 ⏩社区:不是笨小孩👀 🌹欢迎大…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...

MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...
鸿蒙(HarmonyOS5)实现跳一跳小游戏
下面我将介绍如何使用鸿蒙的ArkUI框架,实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...