当前位置: 首页 > news >正文

利用norm.ppfnorm.interval分别计算正态置信区间[实例]

scipy.stats.norm.ppf用于计算正态分布的累积分布函数CDF的逆函数,也称为百分位点函数。它的作用是根据给定的概率值,计算对应的随机变量值。
scipy.stats.norm.interval:用于计算正态分布的置信区间,可指定均值和标准差。
scipy.stats.t.interval:用于计算t分布的置信区间,可选择使用不同的置信水平和自由度。

 利用norm.ppf&norm.interval分别计算正态置信区间:

import scipy.stats as stats
import numpy as np
# 指定概率值(例如,95% 置信水平对应的概率)
alpha = 0.05# 指定样本数据和样本大小
# data = [32, 34, 36, 35, 33, 31, 32, 33, 30, 34]
data = [34,56,39,71,84,92,44,67,98,49,55,73,50,62,75,44,88,53,61,25,36,66,77,35]
sample_size = len(data)# 执行D'Agostino's K-squared检验
stat, p_value = stats.normaltest(data)
# 输出结果
print("-------------------")
print("K-squared正态检验统计量:", stat)
print("K-squared正态检验P-value:", p_value)
# 判断是否符合正态分布的零假设
alpha = 0.05  # 显著性水平
if p_value < alpha:print("拒绝零假设,数据不符合正态分布。")
else:print("p_value>0.05无法拒绝零假设,数据符合正态分布。")
print("-------------------")# 计算样本均值和标准误差(标准差除以样本大小的平方根)
sample_mean = sum(data) / sample_size
sample_std = (sum([(x - sample_mean) ** 2 for x in data]) / (sample_size - 1)) ** 0.5
standard_error = sample_std / (sample_size ** 0.5)# 使用百分位点函数计算置信区间的上下限
confidence_interval_lower = stats.norm.ppf(alpha / 2, loc=sample_mean, scale=standard_error)
confidence_interval_upper = stats.norm.ppf(1 - alpha / 2, loc=sample_mean, scale=standard_error)# 输出置信区间的上下限
print("置信区间的下限:", confidence_interval_lower)
print("置信区间的上限:", confidence_interval_upper)print("-------------------")
# 计算正态分布的置信区间
confidence_interval = stats.norm.interval(1 - alpha, loc=sample_mean, scale=sample_std / np.sqrt(sample_size))
# 输出计算结果
print("norm.interval正态分布的置信区间:", confidence_interval)print("--------t分布结果是不是与上面的很接近?-----------")
# 计算t分布的置信区间
t_confidence_interval = stats.t.interval(1 - alpha, df=sample_size - 1, loc=sample_mean, scale=sample_std / np.sqrt(sample_size))
# 输出计算结果
print("t分布的置信区间:", t_confidence_interval)# -------------------
# K-squared正态检验统计量: 1.12645322945576
# K-squared正态检验P-value: 0.5693689625161796
# p_value>0.05无法拒绝零假设,数据符合正态分布。
# -------------------
# 置信区间的下限: 51.79799091398577
# 置信区间的上限: 67.70200908601423
# -------------------
# norm.interval正态分布的置信区间: (51.79799091398577, 67.70200908601423)
# -------------------
# t分布的置信区间: (51.356996738889045, 68.14300326111095)
# [Finished in 5.5s]

附录多种方式正态检验:

import numpy as np
import pandas as pd
import scipy.stats as stats
import matplotlib.pyplot as plt# data = np.random.normal(loc=12, scale=2.5, size=340)
data = [34,56,39,71,84,92,44,67,98,49,55,73,50,62,75,44,88,53,61,25,36,66,77,35]
df = pd.DataFrame({'Data': data})# 描述性统计分析
mean = df['Data'].mean()
std_dev = df['Data'].std()
skewness = df['Data'].skew()
kurtosis = df['Data'].kurtosis()print("均值:", mean)
print("标准差:", std_dev)
print("偏度:", skewness)
print("峰度:", kurtosis)# 创建一个2x1的子图布局
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 6))
# 可视化 - 正态概率图(Q-Q图)
stats.probplot(data, plot=ax1, dist='norm', fit=True, rvalue=True)  #ax1作为绘图的位置
ax1.set_title("Q-Q Plot")# 可视化 - 直方图
ax2.hist(data, bins=6, rwidth=0.8, density=True) # bins个柱状图,宽度是rwidth(0~1),=1没有缝隙
ax2.set_title("Histogram with Kernel Density Estimate")# 调整子图之间的间距
plt.tight_layout()
# 显示图形
plt.show()# 正态性检验 - Shapiro-Wilk检验
stat, p = stats.shapiro(data)
print("Shapiro-Wilk检验统计量:", stat)
print("Shapiro-Wilk检验p值:", p)# Anderson-Darling检验
result = stats.anderson(df['Data'], dist='norm')
print("Anderson-Darling检验统计量:", result.statistic)
print("Anderson-Darling检验临界值:", result.critical_values)# 执行单样本K-S检验,假设数据服从正态分布
statistic, p_value = stats.kstest(data, 'norm')
print("K-S检验统计量:", statistic)
print("K-S检验p值:", p_value)# 执行正态分布检验
k2, p_value = stats.normaltest(data)
print(f"normaltest正态分布检验的统计量 (K^2): {k2}")
print(f"normaltest检验p值: {p_value}")


 

相关文章:

利用norm.ppfnorm.interval分别计算正态置信区间[实例]

scipy.stats.norm.ppf用于计算正态分布的累积分布函数CDF的逆函数&#xff0c;也称为百分位点函数。它的作用是根据给定的概率值&#xff0c;计算对应的随机变量值。scipy.stats.norm.interval&#xff1a;用于计算正态分布的置信区间&#xff0c;可指定均值和标准差。scipy.st…...

计算机网络各层设备

计算机网络通常被分为七层&#xff0c;每一层都有对应的设备。以下是各层设备的简要介绍&#xff1a; 物理层&#xff08;Physical Layer&#xff09;&#xff1a;负责传输二进制数据位流的物理媒体和设备&#xff0c;例如网线、光纤、中继器、集线器等。 数据链路层&#xf…...

java this用法

在Java中&#xff0c;this是一个关键字&#xff0c;表示当前对象。它可以用来引用当前对象的实例变量、实例方法或者调用当前对象的构造方法。在本文中&#xff0c;我们将深入探讨Java中this关键字的用法。 1. 引用当前对象的实例变量 在Java中&#xff0c;this关键字可以用来…...

【AI视野·今日NLP 自然语言处理论文速览 第四十六期】Tue, 3 Oct 2023

AI视野今日CS.NLP 自然语言处理论文速览 Tue, 3 Oct 2023 (showing first 100 of 110 entries) Totally 100 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Its MBR All the Way Down: Modern Generation Techniques Through the …...

Unity ddx与ddy

有关Unity的dx与dy的概念 引用的文章 1link 2link 3link 4link 有关概念 我们知道在光栅化的时刻&#xff0c;GPUs会在同一时刻并行运行很多Fragment Shader&#xff0c;但是并不是一个pixel一个pixel去执行的&#xff0c;而是将其组织在2x2的一组pixels分块中&#xff0c;…...

bootstrap.xml 和applicaiton.properties和applicaiton.yml的区别和联系

当谈到Spring Boot应用程序的配置时&#xff0c;有三个关键文件经常被提到&#xff1a;bootstrap.xml、application.properties和application.yml。这些文件在应用程序的不同阶段起着不同的作用&#xff0c;并在配置应用程序属性时有一些区别和联系。本文将探讨这些文件的作用、…...

基于被囊群优化的BP神经网络(分类应用) - 附代码

基于被囊群优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于被囊群优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.被囊群优化BP神经网络3.1 BP神经网络参数设置3.2 被囊群算法应用 4.测试结果&#x…...

我的第一个react.js 的router工程

react.js 开发的时候&#xff0c;都是针对一个页面的&#xff0c;多个页面就要用Router了&#xff0c;本文介绍我在vscode 下的第一个router 工程。 我在学习react.js 前端开发&#xff0c;学到router 路由的时候有点犯难了。经过1-2天的努力&#xff0c;终于完成了第一个工程…...

XXPermissions权限请求框架

官网 项目地址&#xff1a;Github博文地址&#xff1a;一句代码搞定权限请求&#xff0c;从未如此简单 框架亮点 一马当先&#xff1a;首款适配 Android 13 的权限请求框架简洁易用&#xff1a;采用链式调用的方式&#xff0c;使用只需一句代码体积感人&#xff1a;功能在同类…...

远程代码执行渗透测试—Server2128

远程代码执行渗透测试 任务环境说明&#xff1a; √ 服务器场景&#xff1a;Server2128&#xff08;开放链接&#xff09; √服务器场景操作系统&#xff1a;Windows √服务器用户名&#xff1a;Administrator密码&#xff1a;pssw0rd 1.找出靶机桌面上文件夹1中的文件RCEBac…...

阿里云关系型数据库有哪些?RDS云数据库汇总

阿里云RDS关系型数据库大全&#xff0c;关系型数据库包括MySQL版、PolarDB、PostgreSQL、SQL Server和MariaDB等&#xff0c;NoSQL数据库如Redis、Tair、Lindorm和MongoDB&#xff0c;阿里云百科分享阿里云RDS关系型数据库大全&#xff1a; 目录 阿里云RDS关系型数据库大全 …...

Linux--socket编程--服务端代码

查看struct sockaddr_in包含的东西&#xff1a; 在/user/include下搜索&#xff1a;grep "struct sockaddr_in { " * -nir r : 递归 i &#xff1a; 不区分大小写 n : 显示行号 socket编程–服务端代码 /* 1、调用 socket 创建套接字 2、调用 bind 添加地址 3、lis…...

安装Vue脚手架图文详解教程

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl 预备工作 在安装Vue脚手架之前&#xff0c;请确保您已经正确安装了npm&#xff1b;假若还尚未安装npm&#xff0c;请你参考 Node.js安装教程图文详解。 安装Vue脚手架 请…...

宠物医院必备,介绍一款宠物疫苗接种管理软件

在当今社会&#xff0c;养宠物已经成为越来越多人的生活方式&#xff0c;宠物疫苗接种已是宠物医院的重要工作&#xff0c;但是目前绝大多数的宠物医院对疫苗接种的管理&#xff0c;还是采取人工登记方式&#xff0c;不仅效率低下&#xff0c;而且无法做到疫苗接种到期自动提醒…...

哈哈,我保研985了,之后会出一期保研经验分享

哈哈&#xff0c;我保研了&#xff0c;之后会出一期保研经验分享 个人背景 学校&#xff1a;河南某四非&#xff0c;计算机科学与技术专业英语成绩&#xff1a;四级439&#xff0c;六级438&#xff08;夏令营无六级&#xff09;科研经历&#xff1a;一个软著、国家级大创&…...

C++ 程序员入门之路——旅程的起点与挑战

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

C/C++ 数组面试算法题

1.将一个数组逆序输出 https://blog.csdn.net/qq_45385706/article/details/110739961 1 #include<stdio.h>2 3 #define N 94 5 int main()6 {7 int a[N] {1,2,3,4,5,6,7,8,9};8 for(int i 0;i<N/2;i)9 { 10 int temp a[i]; 11 a[i]…...

【pwn入门】用gdb实现第1个pwn

声明 本文是B站你想有多PWN学习的笔记&#xff0c;包含一些视频外的扩展知识。 有问题的源码 #include <stdio.h> #include <stdlib.h> #include <unistd.h> char sh[]"/bin/sh"; int func(char *cmd){system(cmd);return 0; }int main(){char …...

用pyinstaller打包LGBM模型为ELF/EXE可执行文件

1. 引入 写好的python代码和模型&#xff0c;如果需要做到离线部署、运行&#xff0c;就必须要将代码和模型打包为可独立运行的可执行文件。 使用pyinstaller就能做到这个&#xff0c;相同的代码&#xff0c;在windows上运行就能打包为exe&#xff0c;在linux上运行就能打包为…...

软考中级—— 操作系统知识

进程管理 操作系统概述 操作系统的作用&#xff1a;通过资源管理提高计算机系统的效率&#xff1b;改善人机界面向用户提供友好的工作环境。 操作系统的特征&#xff1a;并发性、共享性、虚拟性、不确定性。 操作系统的功能&#xff1a;进程管理、存储管理、文件管理、设备…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...