当前位置: 首页 > news >正文

利用norm.ppfnorm.interval分别计算正态置信区间[实例]

scipy.stats.norm.ppf用于计算正态分布的累积分布函数CDF的逆函数,也称为百分位点函数。它的作用是根据给定的概率值,计算对应的随机变量值。
scipy.stats.norm.interval:用于计算正态分布的置信区间,可指定均值和标准差。
scipy.stats.t.interval:用于计算t分布的置信区间,可选择使用不同的置信水平和自由度。

 利用norm.ppf&norm.interval分别计算正态置信区间:

import scipy.stats as stats
import numpy as np
# 指定概率值(例如,95% 置信水平对应的概率)
alpha = 0.05# 指定样本数据和样本大小
# data = [32, 34, 36, 35, 33, 31, 32, 33, 30, 34]
data = [34,56,39,71,84,92,44,67,98,49,55,73,50,62,75,44,88,53,61,25,36,66,77,35]
sample_size = len(data)# 执行D'Agostino's K-squared检验
stat, p_value = stats.normaltest(data)
# 输出结果
print("-------------------")
print("K-squared正态检验统计量:", stat)
print("K-squared正态检验P-value:", p_value)
# 判断是否符合正态分布的零假设
alpha = 0.05  # 显著性水平
if p_value < alpha:print("拒绝零假设,数据不符合正态分布。")
else:print("p_value>0.05无法拒绝零假设,数据符合正态分布。")
print("-------------------")# 计算样本均值和标准误差(标准差除以样本大小的平方根)
sample_mean = sum(data) / sample_size
sample_std = (sum([(x - sample_mean) ** 2 for x in data]) / (sample_size - 1)) ** 0.5
standard_error = sample_std / (sample_size ** 0.5)# 使用百分位点函数计算置信区间的上下限
confidence_interval_lower = stats.norm.ppf(alpha / 2, loc=sample_mean, scale=standard_error)
confidence_interval_upper = stats.norm.ppf(1 - alpha / 2, loc=sample_mean, scale=standard_error)# 输出置信区间的上下限
print("置信区间的下限:", confidence_interval_lower)
print("置信区间的上限:", confidence_interval_upper)print("-------------------")
# 计算正态分布的置信区间
confidence_interval = stats.norm.interval(1 - alpha, loc=sample_mean, scale=sample_std / np.sqrt(sample_size))
# 输出计算结果
print("norm.interval正态分布的置信区间:", confidence_interval)print("--------t分布结果是不是与上面的很接近?-----------")
# 计算t分布的置信区间
t_confidence_interval = stats.t.interval(1 - alpha, df=sample_size - 1, loc=sample_mean, scale=sample_std / np.sqrt(sample_size))
# 输出计算结果
print("t分布的置信区间:", t_confidence_interval)# -------------------
# K-squared正态检验统计量: 1.12645322945576
# K-squared正态检验P-value: 0.5693689625161796
# p_value>0.05无法拒绝零假设,数据符合正态分布。
# -------------------
# 置信区间的下限: 51.79799091398577
# 置信区间的上限: 67.70200908601423
# -------------------
# norm.interval正态分布的置信区间: (51.79799091398577, 67.70200908601423)
# -------------------
# t分布的置信区间: (51.356996738889045, 68.14300326111095)
# [Finished in 5.5s]

附录多种方式正态检验:

import numpy as np
import pandas as pd
import scipy.stats as stats
import matplotlib.pyplot as plt# data = np.random.normal(loc=12, scale=2.5, size=340)
data = [34,56,39,71,84,92,44,67,98,49,55,73,50,62,75,44,88,53,61,25,36,66,77,35]
df = pd.DataFrame({'Data': data})# 描述性统计分析
mean = df['Data'].mean()
std_dev = df['Data'].std()
skewness = df['Data'].skew()
kurtosis = df['Data'].kurtosis()print("均值:", mean)
print("标准差:", std_dev)
print("偏度:", skewness)
print("峰度:", kurtosis)# 创建一个2x1的子图布局
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 6))
# 可视化 - 正态概率图(Q-Q图)
stats.probplot(data, plot=ax1, dist='norm', fit=True, rvalue=True)  #ax1作为绘图的位置
ax1.set_title("Q-Q Plot")# 可视化 - 直方图
ax2.hist(data, bins=6, rwidth=0.8, density=True) # bins个柱状图,宽度是rwidth(0~1),=1没有缝隙
ax2.set_title("Histogram with Kernel Density Estimate")# 调整子图之间的间距
plt.tight_layout()
# 显示图形
plt.show()# 正态性检验 - Shapiro-Wilk检验
stat, p = stats.shapiro(data)
print("Shapiro-Wilk检验统计量:", stat)
print("Shapiro-Wilk检验p值:", p)# Anderson-Darling检验
result = stats.anderson(df['Data'], dist='norm')
print("Anderson-Darling检验统计量:", result.statistic)
print("Anderson-Darling检验临界值:", result.critical_values)# 执行单样本K-S检验,假设数据服从正态分布
statistic, p_value = stats.kstest(data, 'norm')
print("K-S检验统计量:", statistic)
print("K-S检验p值:", p_value)# 执行正态分布检验
k2, p_value = stats.normaltest(data)
print(f"normaltest正态分布检验的统计量 (K^2): {k2}")
print(f"normaltest检验p值: {p_value}")


 

相关文章:

利用norm.ppfnorm.interval分别计算正态置信区间[实例]

scipy.stats.norm.ppf用于计算正态分布的累积分布函数CDF的逆函数&#xff0c;也称为百分位点函数。它的作用是根据给定的概率值&#xff0c;计算对应的随机变量值。scipy.stats.norm.interval&#xff1a;用于计算正态分布的置信区间&#xff0c;可指定均值和标准差。scipy.st…...

计算机网络各层设备

计算机网络通常被分为七层&#xff0c;每一层都有对应的设备。以下是各层设备的简要介绍&#xff1a; 物理层&#xff08;Physical Layer&#xff09;&#xff1a;负责传输二进制数据位流的物理媒体和设备&#xff0c;例如网线、光纤、中继器、集线器等。 数据链路层&#xf…...

java this用法

在Java中&#xff0c;this是一个关键字&#xff0c;表示当前对象。它可以用来引用当前对象的实例变量、实例方法或者调用当前对象的构造方法。在本文中&#xff0c;我们将深入探讨Java中this关键字的用法。 1. 引用当前对象的实例变量 在Java中&#xff0c;this关键字可以用来…...

【AI视野·今日NLP 自然语言处理论文速览 第四十六期】Tue, 3 Oct 2023

AI视野今日CS.NLP 自然语言处理论文速览 Tue, 3 Oct 2023 (showing first 100 of 110 entries) Totally 100 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Its MBR All the Way Down: Modern Generation Techniques Through the …...

Unity ddx与ddy

有关Unity的dx与dy的概念 引用的文章 1link 2link 3link 4link 有关概念 我们知道在光栅化的时刻&#xff0c;GPUs会在同一时刻并行运行很多Fragment Shader&#xff0c;但是并不是一个pixel一个pixel去执行的&#xff0c;而是将其组织在2x2的一组pixels分块中&#xff0c;…...

bootstrap.xml 和applicaiton.properties和applicaiton.yml的区别和联系

当谈到Spring Boot应用程序的配置时&#xff0c;有三个关键文件经常被提到&#xff1a;bootstrap.xml、application.properties和application.yml。这些文件在应用程序的不同阶段起着不同的作用&#xff0c;并在配置应用程序属性时有一些区别和联系。本文将探讨这些文件的作用、…...

基于被囊群优化的BP神经网络(分类应用) - 附代码

基于被囊群优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于被囊群优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.被囊群优化BP神经网络3.1 BP神经网络参数设置3.2 被囊群算法应用 4.测试结果&#x…...

我的第一个react.js 的router工程

react.js 开发的时候&#xff0c;都是针对一个页面的&#xff0c;多个页面就要用Router了&#xff0c;本文介绍我在vscode 下的第一个router 工程。 我在学习react.js 前端开发&#xff0c;学到router 路由的时候有点犯难了。经过1-2天的努力&#xff0c;终于完成了第一个工程…...

XXPermissions权限请求框架

官网 项目地址&#xff1a;Github博文地址&#xff1a;一句代码搞定权限请求&#xff0c;从未如此简单 框架亮点 一马当先&#xff1a;首款适配 Android 13 的权限请求框架简洁易用&#xff1a;采用链式调用的方式&#xff0c;使用只需一句代码体积感人&#xff1a;功能在同类…...

远程代码执行渗透测试—Server2128

远程代码执行渗透测试 任务环境说明&#xff1a; √ 服务器场景&#xff1a;Server2128&#xff08;开放链接&#xff09; √服务器场景操作系统&#xff1a;Windows √服务器用户名&#xff1a;Administrator密码&#xff1a;pssw0rd 1.找出靶机桌面上文件夹1中的文件RCEBac…...

阿里云关系型数据库有哪些?RDS云数据库汇总

阿里云RDS关系型数据库大全&#xff0c;关系型数据库包括MySQL版、PolarDB、PostgreSQL、SQL Server和MariaDB等&#xff0c;NoSQL数据库如Redis、Tair、Lindorm和MongoDB&#xff0c;阿里云百科分享阿里云RDS关系型数据库大全&#xff1a; 目录 阿里云RDS关系型数据库大全 …...

Linux--socket编程--服务端代码

查看struct sockaddr_in包含的东西&#xff1a; 在/user/include下搜索&#xff1a;grep "struct sockaddr_in { " * -nir r : 递归 i &#xff1a; 不区分大小写 n : 显示行号 socket编程–服务端代码 /* 1、调用 socket 创建套接字 2、调用 bind 添加地址 3、lis…...

安装Vue脚手架图文详解教程

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl 预备工作 在安装Vue脚手架之前&#xff0c;请确保您已经正确安装了npm&#xff1b;假若还尚未安装npm&#xff0c;请你参考 Node.js安装教程图文详解。 安装Vue脚手架 请…...

宠物医院必备,介绍一款宠物疫苗接种管理软件

在当今社会&#xff0c;养宠物已经成为越来越多人的生活方式&#xff0c;宠物疫苗接种已是宠物医院的重要工作&#xff0c;但是目前绝大多数的宠物医院对疫苗接种的管理&#xff0c;还是采取人工登记方式&#xff0c;不仅效率低下&#xff0c;而且无法做到疫苗接种到期自动提醒…...

哈哈,我保研985了,之后会出一期保研经验分享

哈哈&#xff0c;我保研了&#xff0c;之后会出一期保研经验分享 个人背景 学校&#xff1a;河南某四非&#xff0c;计算机科学与技术专业英语成绩&#xff1a;四级439&#xff0c;六级438&#xff08;夏令营无六级&#xff09;科研经历&#xff1a;一个软著、国家级大创&…...

C++ 程序员入门之路——旅程的起点与挑战

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

C/C++ 数组面试算法题

1.将一个数组逆序输出 https://blog.csdn.net/qq_45385706/article/details/110739961 1 #include<stdio.h>2 3 #define N 94 5 int main()6 {7 int a[N] {1,2,3,4,5,6,7,8,9};8 for(int i 0;i<N/2;i)9 { 10 int temp a[i]; 11 a[i]…...

【pwn入门】用gdb实现第1个pwn

声明 本文是B站你想有多PWN学习的笔记&#xff0c;包含一些视频外的扩展知识。 有问题的源码 #include <stdio.h> #include <stdlib.h> #include <unistd.h> char sh[]"/bin/sh"; int func(char *cmd){system(cmd);return 0; }int main(){char …...

用pyinstaller打包LGBM模型为ELF/EXE可执行文件

1. 引入 写好的python代码和模型&#xff0c;如果需要做到离线部署、运行&#xff0c;就必须要将代码和模型打包为可独立运行的可执行文件。 使用pyinstaller就能做到这个&#xff0c;相同的代码&#xff0c;在windows上运行就能打包为exe&#xff0c;在linux上运行就能打包为…...

软考中级—— 操作系统知识

进程管理 操作系统概述 操作系统的作用&#xff1a;通过资源管理提高计算机系统的效率&#xff1b;改善人机界面向用户提供友好的工作环境。 操作系统的特征&#xff1a;并发性、共享性、虚拟性、不确定性。 操作系统的功能&#xff1a;进程管理、存储管理、文件管理、设备…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...