认知智能最新研究成果
声明:以下内容仅代表个人对现象和本质探索,不代表对学术成果评价。曾有幸和马文明斯基的学生段老师和方老师一起讨论过人工智能问题。随着自己对问题进一步理解,刚好18年左右开始接触认知智能理论核心认知计算部分。
第一:算法是一种处理问题的逻辑(从认识论看其实解决问题方法有很多种),并且能用计算机指令在有限步骤和时间根据特定输出给出特定输出。
第二:机器学习是通过某种单模态(其实本质是表示客观存在的数据类型单一描述)的数据通过近似计算方法解决大规模问题复杂性和不确定性。
第三:软件和硬件在实现逻辑应该是等效的(计算机组成原理有相关定义理论),离散数学和组合数学在理论上基本奠定了计算机本身的计算能力。
第四:深度学习是随着并行计算和异构计算发展起来的,并非算法本身有什么重大革命性的突破工作。ResNet在最大贡献是通过恒等映射理论实现了残差卷积。AlexNet的突破性成就是通过并行计算实现了多卡浮点运算解决了大规模矩阵在计算机视觉上的工程性突出贡献。
第五:深度学习的局限性并不是数据量多少问题的,而是在理论数据和实际数据中的模态关系,这才是导致过拟合和欠拟合现象存在的本质问题,多模态问题其实可以让问题本身在知识表示上更加准确。预训练解决了模型在不同数据上训练和泛化问题。
第六:从预训练到生成式大模型最大的特点是并不在编解码,而是基于思维链的近端策略优化强化学习。这个方向个人理解也是将基于深度学习的人工智能带入下一个阶段的认知智能与认知计算的开始。
第七:什么是认知智能和认知计算,个人在研究过程发现,认知智能与人工智能最大区别是多模态的因果结构化知识表示,因为这样可以指数级降低算法对数据依赖和模型复杂性,同时针对硬件结构不再是单一的并行计算,这种计算在数据层特别占用带宽,在计算层特别占用显存。
第八:如果通过科学方法进行下一步研究?按照目前问题统一做法是训练,这种训练本质上在科学里面就是归纳法,针对客观现象进行主观或客观统计归纳分析。那么,想更深入的研究其实就会到下一个阶段演绎法,探索一种通过几何或者代数方式针对深度学习现在的范式研究找到一种可以表示电路逻辑实现深度学习的可解释问题,从而这个问题就能以思维逻辑或者思维链及思维图或思维体,思维空间方式更好的进行发展下去。暴力计算的合理性是阶段性的,自然界的进化都是精密的。
以下是在研究过程发现的美国国防部高等研究计划局


参考文献:
一:累积推理《Cumulative Reasoning with Large Language Models》
Yifan Zhang, Jingqin Yang, Yang Yuan, Andrew Chi-Chih Yao
While language models are powerful and versatile, they often fail to address highly complex problems. This is because solving complex problems requires deliberate thinking, which has been only minimally guided during training. In this paper, we propose a new method called Cumulative Reasoning (CR), which employs language models in a cumulative and iterative manner to emulate human thought processes. By decomposing tasks into smaller components, CR streamlines the problem-solving process, rendering it both more manageable and effective. For logical inference tasks, CR consistently outperforms existing methods with an improvement up to 9.3%, and achieves the astonishing accuracy of 98.04% on the curated FOLIO wiki dataset. In the context of the Game of 24, CR achieves an accuracy of 98%, which signifies a substantial enhancement of 24% over the previous state-of-the-art method. Finally, on the MATH dataset, we establish new state-of-the-art results with 58.0% overall accuracy, surpassing the previous best approach by a margin of 4.2%, and achieving 43% relative improvement on the hardest level 5 problems (22.4% to 32.1%).
二:思维图《Graph of Thoughts: Solving Elaborate Problems with Large Language Models》
Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, Torsten Hoefler
We introduce Graph of Thoughts (GoT): a framework that advances prompting capabilities in large language models (LLMs) beyond those offered by paradigms such as Chain-of-Thought or Tree of Thoughts (ToT). The key idea and primary advantage of GoT is the ability to model the information generated by an LLM as an arbitrary graph, where units of information (“LLM thoughts”) are vertices, and edges correspond to dependencies between these vertices. This approach enables combining arbitrary LLM thoughts into synergistic outcomes, distilling the essence of whole networks of thoughts, or enhancing thoughts using feedback loops. We illustrate that GoT offers advantages over state of the art on different tasks, for example increasing the quality of sorting by 62% over ToT, while simultaneously reducing costs by >31%. We ensure that GoT is extensible with new thought transformations and thus can be used to spearhead new prompting schemes. This work brings the LLM reasoning closer to human thinking or brain mechanisms such as recurrence, both of which form complex networks.
总结,以上两篇论文都非常有价值,个人理解这两篇论文侧重在知识本身的表示,并没有研究知识这种表示的因果逻辑结构本身,如果可以从预训练大模型的结果可逆出输入数据特征编码器的思维链图知识叠加因果会更加令人惊叹!
相关文章:
认知智能最新研究成果
声明:以下内容仅代表个人对现象和本质探索,不代表对学术成果评价。曾有幸和马文明斯基的学生段老师和方老师一起讨论过人工智能问题。随着自己对问题进一步理解,刚好18年左右开始接触认知智能理论核心认知计算部分。 第一:算法是一…...
Armv8/Armv9 Cache知识大纲分享--思维导图
关键词:cache学习、mmu学习、cache资料、mmu资料、arm资料、armv8资料、armv9资料、 trustzone视频、tee视频、ATF视频、secureboot视频、安全启动视频、selinux视频,cache视频、mmu视频,armv8视频、armv9视频、FF-A视频、密码学视频、RME/CC…...
如何使用百度“云一朵”来分析PDF文件
PDF 文件是一种常见的文件格式,用于存储文档、图像和其他内容。在许多情况下,我们需要对 PDF 文件进行分析,以提取其中的信息。百度“云一朵”提供了一个 PDF 分析 API,可以帮助我们轻松地对 PDF 文件进行分析。 在本博客文章中&…...
IIS解决上传文件大小限制
IIS解决上传文件大小限制 目的:通过配置文件和IIS来解决服务器对上传文件大小的限制 1:修改配置文件(默认为4M 值的大小根据自己情况进行修改) <httpRuntime maxRequestLength"2048000" /> 2:修改IIS配…...
多源最短路径的原理及C++实现
时间复杂度 O(n3),n是端点数。 核心代码 template<class T, T INF 1000 * 1000 * 1000> class CNeiBoMat { public: CNeiBoMat(int n, const vector<vector<int>>& edges,bool bDirectfalse,bool b1Base false) { m_vMat.assign(n, vector<…...
JMeter性能测试
性能测试前言 老师开局一句话:性能测试和你会不会JMeter一点关系没有…… 作者坚持技多不压身的原则,还是多学一点JMeter吧,看老师到底要怎么讲下去,什么并发量、吞吐量啥的…… 性能测试的核心思想:在于创造大量并发去…...
Cocos Creator3.8 实战问题(四)巧用九宫格图像拉伸
一、为什么要使用九宫格图像拉伸 相信做过前端的同学都知道,ui (图片)资源对包体大小和内存都有非常直接的影响。 通常ui 资源都是图片,也是最占资源量的资源类型,游戏中的ui 资源还是人机交互的最重要的部分ÿ…...
Linux shell编程学习笔记7:只读变量
在编程过程中,我们经常会使用到一些常量,也就是值不需要改变的变量,在许多编程语言提供了常量的定义方式,比如c/c的define MAXNUM 99999 或 const int a 7,javasccipt的const a7, 等等。 跟以上这些方法…...
Scala第十七章节
Scala第十七章节 scala总目录 文档资料下载 章节目标 了解集合的相关概念掌握Traversable集合的用法掌握随机学生序列案例 1. 集合 1.1 概述 但凡了解过编程的人都知道程序 算法 数据结构这句话, 它是由著名的瑞士计算机科学家尼古拉斯沃斯提出来的, 而他也是1984年图灵…...
BGP高级特性——4字节AS号
目录 4字节AS号 相关概念 两种过渡属性 4字节AS号的格式 4字节AS号建立邻居 4字节AS号路由传递 配置命令 4字节AS号 相比于2字节AS号,范围更大。由1~65535扩展到1~4294967295 支持4字节AS号的BGP设备兼容仅支持2字节AS号的BGP设备 相关概念 Speaker&#…...
cesium源码无法更新的解决方案
一、环境: 中国移动的宽带 win10操作系统 二、问题复现步骤: 1、开了VPN,设置为全局代理 2、在vscode中执行git pull命令 3、结果显示无法更新 三、解决方案: 1、安装Github官方开发的软件Github Desktop 下载地址…...
大数据-玩转数据-双流JOIN
一、双流JOIN 在Flink中, 支持两种方式的流的Join: Window Join和Interval Join 二、Window Join 窗口join会join具有相同的key并且处于同一个窗口中的两个流的元素. 注意: 1.所有的窗口join都是 inner join, 意味着a流中的元素如果在b流中没有对应的, 则a流中这个元素就不会…...
from PIL import Image,文字成图,ImageFont import jieba分词,input优雅python绘制图片
开始的代码 import os from PIL import Image, ImageDraw, ImageFont import jiebadef generate_image_with_white_bg(text, font_path, output_path):# 设置图片大小和背景颜色image_width 800image_height 600bg_color (255, 255, 255) # 白色# 创建图片对象image Imag…...
渗透测试信息收集方法笔记
一、指纹识别 1、钟馗之眼https://www.zoomeye.org/ 2、天眼查https://www.tianyancha.com/ 3、工具:御剑WEB指纹识别系统正式版,可以查网站用了哪些框架,什么版本,有哪些漏洞 4、kali whatweb 二、信息泄露 1、csdn https://www.…...
协议栈——连接服务器
如对方的ip和port配置信息,这里的连接是指通信前的准备工作 上一篇介绍查看套接字的命令时,可以看到很多信息,但是刚刚创建出来的套接字是什么信息都没有的,协议栈也因此不知道和谁通信; 客户端填补信息 这一步中调…...
数据结构--队列与循环队列的实现
数据结构–队列的实现 1.队列的定义 比如有一个人叫做张三,这天他要去医院看病,看病时就需要先挂号,由于他来的比较晚,所以他的号码就比较大,来的比较早的号码就比较小,需要到就诊窗口从小号到大依次排队,前面的小号就诊结束之后,才会轮到大号来,小号每就诊完毕就销毁,每新来…...
数据结构—栈、队列、链表
一、栈 Stack(存取O(1)) 先进后出,进去123,出来321。 基于数组:最后一位为栈尾,用于取操作。 基于链表:第一位为栈尾,用于取操作。 1.1、数组栈 /*** 基于数组实现的顺序栈&#…...
2023年4月到7月工作经历
2023年4 有同事说程序崩溃一起分析得结果 unsigned uNum 2; std::string str "abc" uNum; std::cout << str; 结果是c 。如果uNum 很大的话,就可能崩溃。 unsigned uNum 2; //std::string str "abc" uN…...
嵌入式Linux应用开发-驱动大全-同步与互斥③
嵌入式Linux应用开发-驱动大全-同步与互斥③ 第一章 同步与互斥③1.4 Linux锁的介绍与使用1.4.1 锁的类型1.4.1.1 自旋锁1.4.1.2 睡眠锁 1.4.2 锁的内核函数1.4.2.1 自旋锁1.4.2.2 信号量1.4.2.3 互斥量1.4.2.4 semaphore和 mutex的区别 1.4.3 何时用何种锁1.4.4 内核抢占(pree…...
力扣-383.赎金信
Idea 使用一个hashmap 或者一个int数组存储第二次字符串中每一个字符及其出现的次数 遍历第一个字符串,讲出现的重复字符减1,若该字符次数已经为0,则返回false AC Code class Solution { public:bool canConstruct(string ransomNote, strin…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...
华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...
