数据挖掘实验(二)数据预处理【等深分箱与等宽分箱】
一、分箱平滑的原理
(1)分箱方法
在分箱前,一定要先排序数据,再将它们分到等深(等宽)的箱中。
常见的有两种分箱方法:等深分箱和等宽分箱。
等深分箱:按记录数进行分箱,每箱具有相同的记录数,每箱的记录数称为箱的权重,也称箱子的深度。
等宽分箱:在整个属性值的区间上平均分布,即每个箱的区间范围设定为一个常量,称为箱子的宽度。
(2)数据平滑
将数据划分到不同的箱子之后,可以运用如下三种策略对每个箱子中的数据进行平滑处理:
平均值平滑:箱中的每一个值被箱中数值的平均值替换。
中值平滑:箱中的每一个值被箱中数值的中值替换。
边界平滑:箱中的最大值和最小值称为箱子的边界,箱中的每一个值被最近的边界值替换。
二、Matlab代码实现
首先用rand()函数随机生成20*5的矩阵,其数据范围为[0,1]。
1.等深分箱
clear;clc; % 清除变量和命令窗口A=rand(20,5); % 随机生成20*5的矩阵,其中每个数取值范围[0,1]
fprintf("当前生成的原数据:\n");
disp(A);% 排序,参数1表示按列排序,取2为按行排序;'ascend'为升序,'descend'为降序
A=sort(A,1,'ascend');
fprintf("将原数据的每列排序后:\n");
disp(A);h=input("请输入等深分箱的深度h(1<h<20):");% 检查输入变量h是否有效
if ~isnumeric(h) || ~isscalar(h) || h<=1 || h>=20 || h~=floor(h)error("输入变量h必须是一个大于1小于20的正整数");
end%% 对每列进行等深分箱,然后求每个箱子的均值
[n,m]=size(A); % n行m列
B=zeros(n,m); % 预分配输出变量B
for j=1:m % 列jfor i=1:h:n % 行i% 当前箱子第一个数位置为i,最后一个数位置为min(i+h-1,n)p1=int64(i); % 转换成整数(i默认是double类型,但是索引必须要为整数)p2=int64(min(i+h-1,n));B(p1:p2,j)=mean(A(p1:p2,j)); % 当前箱子的均值end
end % 结束行循环fprintf("\n经过等深分箱,用箱均值平滑处理后的数据:\n");
disp(B);
for i=1:h:n 的含义是:
- i 是一个循环变量,它的初始值是 1。
- h 是一个输入变量,它表示等深分箱的深度。
- n 是一个由 size 函数得到的变量,它表示矩阵 A 的行数。
- 这个循环的作用是从第一行开始,每隔 h 行取一行作为一个箱子的起始位置,然后计算这个箱子中所有元素的均值,并赋给输出矩阵 B 的相应位置。
isnumeric 函数是一个用于判断输入是否为数值数组的函数。数值数组是指由数值类型的元素组成的数组,例如整数、浮点数、无穷大或非数字。MATLAB 中的数值类型包括 int8, int16, int32, int64, uint8, uint16, uint32, uint64, single, 和 double。
isnumeric 函数的语法格式是:
TF = isnumeric(A)其中,A 是输入数组,可以是任意维度的;TF 是输出逻辑值,如果 A 是数值数组,则返回 1 (true),否则返回 0 (false)。
例如,如果 A 是一个包含整数和浮点数的矩阵,那么 isnumeric(A) 将返回 1;如果 A 是一个包含字符串或单元数组的矩阵,那么 isnumeric(A) 将返回 0。
~isscalar(h) 函数是一个逻辑表达式,它用于判断 h 是否不是一个标量。标量是一个大小为 1×1 的二维数组,也就是一个单个的数值。如果 h 不是一个标量,那么 ~isscalar(h) 将返回 1 (true),否则返回 0 (false)。
python代码为
import numpy as np # 导入 numpy 库
=A = np.random.rand(20,5) # 随机生成 20*5 的矩阵,其中每个数取值范围 [0,1]
print("当前生成的原数据:")
print(A)# 排序,参数 0 表示按列排序,取 1 为按行排序;'ascend' 为升序,'descend' 为降序
A = np.sort(A, axis=0, kind='quicksort') # 使用快速排序算法
print("将原数据的每列排序后:")
print(A)h = int(input("请输入等深分箱的深度 h (1<h<20):")) # 输入一个整数# 检查输入变量 h 是否有效
if not isinstance(h, int) or h <= 1 or h >= 20: # 如果 h 不是一个大于 1 小于 20 的整数raise ValueError("输入变量 h 必须是一个大于 1 小于 20 的正整数") # 抛出异常# 对每列进行等深分箱,然后求每个箱子的均值
n, m = A.shape # n 行 m 列
B = np.zeros((n,m)) # 预分配输出变量 B
for j in range(m): # 列 jfor i in range(0, n, h): # 行 i# 当前箱子第一个数位置为 i,最后一个数位置为 min(i+h,n)p1 = int(i) # 转换成整数 (i 默认是 double 类型,但是索引必须要为整数)p2 = int(min(i+h,n))B[p1:p2,j] = np.mean(A[p1:p2,j]) # 当前箱子的均值print("\n经过等深分箱,用箱均值平滑处理后的数据:")
print(B)
代码运行结果
输入的深度为3:
当前生成的原数据:
A =0.4067 0.4504 0.5747 0.5154 0.99690.6669 0.2057 0.3260 0.6575 0.55350.9337 0.8997 0.4564 0.9509 0.51550.8110 0.7626 0.7138 0.7223 0.33070.4845 0.8825 0.8844 0.4001 0.43000.7567 0.2850 0.7209 0.8319 0.49180.4170 0.6732 0.0186 0.1343 0.07100.9718 0.6643 0.6748 0.0605 0.88770.9880 0.1228 0.4385 0.0842 0.06460.8641 0.4073 0.4378 0.1639 0.43620.3889 0.2753 0.1170 0.3242 0.82660.4547 0.7167 0.8147 0.3017 0.39450.2467 0.2834 0.3249 0.0117 0.61350.7844 0.8962 0.2462 0.5399 0.81860.8828 0.8266 0.3427 0.0954 0.88620.9137 0.3900 0.3757 0.1465 0.93110.5583 0.4979 0.5466 0.6311 0.19080.5989 0.6948 0.5619 0.8593 0.25860.1489 0.8344 0.3958 0.9742 0.89790.8997 0.6096 0.3981 0.5708 0.5934将原数据的每列排序后:
A =0.1489 0.1228 0.0186 0.0117 0.06460.2467 0.2057 0.1170 0.0605 0.07100.3889 0.2753 0.2462 0.0842 0.19080.4067 0.2834 0.3249 0.0954 0.25860.4170 0.2850 0.3260 0.1343 0.33070.4547 0.3900 0.3427 0.1465 0.39450.4845 0.4073 0.3757 0.1639 0.43000.5583 0.4504 0.3958 0.3017 0.43620.5989 0.4979 0.3981 0.3242 0.49180.6669 0.6096 0.4378 0.4001 0.51550.7567 0.6643 0.4385 0.5154 0.55350.7844 0.6732 0.4564 0.5399 0.59340.8110 0.6948 0.5466 0.5708 0.61350.8641 0.7167 0.5619 0.6311 0.81860.8828 0.7626 0.5747 0.6575 0.82660.8997 0.8266 0.6748 0.7223 0.88620.9137 0.8344 0.7138 0.8319 0.88770.9337 0.8825 0.7209 0.8593 0.89790.9718 0.8962 0.8147 0.9509 0.93110.9880 0.8997 0.8844 0.9742 0.9969请输入等深分箱的深度h(1<h<20):3经过等深分箱,用箱均值平滑处理后的数据:
B =0.2615 0.2013 0.1273 0.0521 0.10880.2615 0.2013 0.1273 0.0521 0.10880.2615 0.2013 0.1273 0.0521 0.10880.4262 0.3195 0.3312 0.1254 0.32790.4262 0.3195 0.3312 0.1254 0.32790.4262 0.3195 0.3312 0.1254 0.32790.5472 0.4519 0.3899 0.2633 0.45270.5472 0.4519 0.3899 0.2633 0.45270.5472 0.4519 0.3899 0.2633 0.45270.7360 0.6490 0.4443 0.4851 0.55410.7360 0.6490 0.4443 0.4851 0.55410.7360 0.6490 0.4443 0.4851 0.55410.8526 0.7247 0.5611 0.6198 0.75290.8526 0.7247 0.5611 0.6198 0.75290.8526 0.7247 0.5611 0.6198 0.75290.9157 0.8478 0.7031 0.8045 0.89060.9157 0.8478 0.7031 0.8045 0.89060.9157 0.8478 0.7031 0.8045 0.89060.9799 0.8979 0.8495 0.9626 0.96400.9799 0.8979 0.8495 0.9626 0.9640
2.等宽分箱
输入箱子的宽度w(0<w<1),将每列按等宽分箱,然后用箱均值平滑。
clear;clc; % 清除变量和命令窗口%A=rand(20,5); % 随机生成20*5的矩阵,其中每个数取值范围[0,1]
A=[ 0.5038 0.3600 0.6690 0.1432 0.94190.6128 0.4542 0.5002 0.5594 0.65590.8194 0.3864 0.2180 0.0046 0.45190.5319 0.7756 0.5716 0.7667 0.83970.2021 0.7343 0.1222 0.8487 0.53260.4539 0.4303 0.6712 0.9168 0.55390.4279 0.6938 0.5996 0.9870 0.68010.9661 0.9452 0.0560 0.5051 0.36720.6201 0.7842 0.0563 0.2714 0.23930.6954 0.7056 0.1525 0.1008 0.57890.7202 0.1093 0.0196 0.5078 0.86690.3469 0.3899 0.4352 0.5856 0.40680.5170 0.5909 0.8322 0.7629 0.11260.5567 0.4594 0.6174 0.0830 0.44380.1565 0.0503 0.5201 0.6616 0.30020.5621 0.2287 0.8639 0.5170 0.40140.6948 0.8342 0.0977 0.1710 0.83340.4265 0.0156 0.9081 0.9386 0.40360.8363 0.8637 0.1080 0.5905 0.39020.7314 0.0781 0.5170 0.4406 0.3604];
fprintf("当前生成的原数据:\n");
disp(A);
% 排序,参数1表示按列排序,取2为按行排序;'ascend'为升序,'descend'为降序
A=sort(A,1,'ascend');
fprintf("将原数据的每列排序后:\n");
disp(A);w=input("请输入等宽分箱的宽度w(0<w<1):");
% 检查输入变量w是否有效
if ~isnumeric(w) || ~isscalar(w) || w<=0error("输入变量w必须是一个大于0小于1的正数");
end%% 对每列进行等宽分箱,然后求每个箱子的均值
[n,m]=size(A); % n行m列
B=zeros(n,m); % 预分配输出变量B
for j=1:m % 列jpos=1; % 当前箱子第一个数的位置A(n+1,j)=18e9; % 保证i=n+1时,A(i,j)-A(pos,j)>w一定成立for i=1:n+1 % 行iif A(i,j)-A(pos,j)>w % 当前箱子最后一个数的位置为i-1B(pos:i-1,j)=mean(A(pos:i-1,j)); % 当前箱子的均值pos=i; % 更新为下一个箱子的第一个数的位置endend
endfprintf("\n经过等宽分箱,用箱均值平滑处理后的数据:\n");
disp(B);
if A(i,j)-A(pos,j)>w
这段代码的作用是判断当前元素是否属于当前箱子。如果当前元素与当前箱子的第一个元素的差大于 w,那么说明当前元素已经超出了当前箱子的范围,需要开始新的一个箱子;如果不大于 w,那么说明当前元素还在当前箱子内,继续循环。
代码运行结果
输入的宽度为0.2:
当前生成的原数据:
A =0.5038 0.3600 0.6690 0.1432 0.94190.6128 0.4542 0.5002 0.5594 0.65590.8194 0.3864 0.2180 0.0046 0.45190.5319 0.7756 0.5716 0.7667 0.83970.2021 0.7343 0.1222 0.8487 0.53260.4539 0.4303 0.6712 0.9168 0.55390.4279 0.6938 0.5996 0.9870 0.68010.9661 0.9452 0.0560 0.5051 0.36720.6201 0.7842 0.0563 0.2714 0.23930.6954 0.7056 0.1525 0.1008 0.57890.7202 0.1093 0.0196 0.5078 0.86690.3469 0.3899 0.4352 0.5856 0.40680.5170 0.5909 0.8322 0.7629 0.11260.5567 0.4594 0.6174 0.0830 0.44380.1565 0.0503 0.5201 0.6616 0.30020.5621 0.2287 0.8639 0.5170 0.40140.6948 0.8342 0.0977 0.1710 0.83340.4265 0.0156 0.9081 0.9386 0.40360.8363 0.8637 0.1080 0.5905 0.39020.7314 0.0781 0.5170 0.4406 0.3604将原数据的每列排序后:
A =0.1565 0.0156 0.0196 0.0046 0.11260.2021 0.0503 0.0560 0.0830 0.23930.3469 0.0781 0.0563 0.1008 0.30020.4265 0.1093 0.0977 0.1432 0.36040.4279 0.2287 0.1080 0.1710 0.36720.4539 0.3600 0.1222 0.2714 0.39020.5038 0.3864 0.1525 0.4406 0.40140.5170 0.3899 0.2180 0.5051 0.40360.5319 0.4303 0.4352 0.5078 0.40680.5567 0.4542 0.5002 0.5170 0.44380.5621 0.4594 0.5170 0.5594 0.45190.6128 0.5909 0.5201 0.5856 0.53260.6201 0.6938 0.5716 0.5905 0.55390.6948 0.7056 0.5996 0.6616 0.57890.6954 0.7343 0.6174 0.7629 0.65590.7202 0.7756 0.6690 0.7667 0.68010.7314 0.7842 0.6712 0.8487 0.83340.8194 0.8342 0.8322 0.9168 0.83970.8363 0.8637 0.8639 0.9386 0.86690.9661 0.9452 0.9081 0.9870 0.9419请输入等宽分箱的宽度w(0<w<1):0.2经过等宽分箱,用箱均值平滑处理后的数据:
B =0.2352 0.0633 0.1038 0.1005 0.21740.2352 0.0633 0.1038 0.1005 0.21740.2352 0.0633 0.1038 0.1005 0.21740.5213 0.0633 0.1038 0.1005 0.43120.5213 0.3413 0.1038 0.1005 0.43120.5213 0.3413 0.1038 0.3560 0.43120.5213 0.3413 0.1038 0.3560 0.43120.5213 0.3413 0.1038 0.5610 0.43120.5213 0.4837 0.5373 0.5610 0.43120.5213 0.4837 0.5373 0.5610 0.43120.5213 0.4837 0.5373 0.5610 0.43120.5213 0.4837 0.5373 0.5610 0.43120.5213 0.7702 0.5373 0.5610 0.43120.7496 0.7702 0.5373 0.5610 0.63830.7496 0.7702 0.5373 0.8467 0.63830.7496 0.7702 0.7591 0.8467 0.63830.7496 0.7702 0.7591 0.8467 0.87050.7496 0.7702 0.7591 0.8467 0.87050.7496 0.7702 0.7591 0.8467 0.87050.9661 0.9452 0.9081 0.9870 0.8705
相关文章:
数据挖掘实验(二)数据预处理【等深分箱与等宽分箱】
一、分箱平滑的原理 (1)分箱方法 在分箱前,一定要先排序数据,再将它们分到等深(等宽)的箱中。 常见的有两种分箱方法:等深分箱和等宽分箱。 等深分箱:按记录数进行分箱࿰…...
Vue2 第一次学习
本章为超级浓缩版,文章过于短,方便复习使用哦~ 文章目录 1. 简单引入 vue.js2. 指令2.1 事件绑定指令 v-on (简写 )2.2 内容渲染指令2.3 双向绑定指令 v-model2.4 属性绑定指令 v-bind (简写 : )2.5 条件渲染指令2.6 循环指令 v-for 3. vue 其他知识3.1 侦听器 watch3.2 计算属…...
tiny模式基本原理整合
【Tiny模式】的基本构成 M【首头在首位】 U【/】 V【HTTP/】 Host H【真实ip】 XH \r回车 \n换行 \t制表 \ 空格 一个基本的模式构成 [method] [uri] [version]\r\nHost: [host]\r\n[method] [uri] [version]\r\nHost: [host]\r\n 检测顺序 http M H XH 有些地区 XH H M 我这边…...
使用聚氨酯密封件的好处?
聚氨酯密封件因其优异的耐用性、灵活性和广泛的应用范围而在各个行业中广受欢迎。在本文中,我们将探讨使用聚氨酯密封件的优点,阐明其在许多不同领域广泛使用背后的原因。 1、高性能: 聚氨酯密封件具有出色的性能特征,使其成为各…...
DevEco Studio如何安装中文插件
首先 官网下载中文插件 由于DevEco是基于IntelliJ IDEA Community的,所有Compatibility选择“IntelliJ IDEA Community”,然后下载一个对应最新的就ok了。 最后打开Plugins页面,点击右上角齿轮 -> Install Plugin from Disk…。选择下载的…...
10.2 校招 实习 内推 面经
绿泡*泡: neituijunsir 交流裙 ,内推/实习/校招汇总表格 1、校招 | 国家电网 国网信通产业集团2024届校园招聘! 校招 | 国家电网 国网信通产业集团2024届校园招聘! 2、校招 | 海信集团2024届全球校园招聘正式启动!…...
Golang 语言学习 01 包含如何快速学习一门新语言
Golang方向 区块链 go服务器端 (后台流量支撑程序) 支撑主站后台流量(排序,推荐,搜索等),提供负载均衡,cache,容错,按条件分流,统计运行指标 (qps, latenc…...
整理了197个经典SOTA模型,涵盖图像分类、目标检测、推荐系统等13个方向
今天来帮大家回顾一下计算机视觉、自然语言处理等热门研究领域的197个经典SOTA模型,涵盖了图像分类、图像生成、文本分类、强化学习、目标检测、推荐系统、语音识别等13个细分方向。建议大家收藏了慢慢看,下一篇顶会的idea这就来了~ 由于整理的SOTA模型…...
10.4 小任务
目录 QT实现TCP服务器客户端搭建的代码,现象 TCP服务器 .h文件 .cpp文件 现象 TCP客户端 .h文件 .cpp文件 现象 QT实现TCP服务器客户端搭建的代码,现象 TCP服务器 .h文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #includ…...
AJAX--Express速成
一、基本概念 1、AJAX(Asynchronous JavaScript And XML),即为异步的JavaScript 和 XML。 2、异步的JavaScript 它可以异步地向服务器发送请求,在等待响应的过程中,不会阻塞当前页面。浏览器可以做自己的事情。直到成功获取响应后…...
开题报告 PPT 应该怎么做
开题报告 PPT 应该怎么做 1、报告时首先汇报自己的姓名、单位、专业和导师。 2、研究背景(2-3张幻灯片) 简要阐明所选题目的研究目的及意义。 研究的目的,即研究应达到的目标,通过研究的背景加以说明(即你为什么要…...
JavaScript系列从入门到精通系列第十四篇:JavaScript中函数的简介以及函数的声明方式以及函数的调用
文章目录 一:函数的简介 1:概念和简介 2:创建一个函数对象 3:调用函数对象 4:函数对象的普通功能 5:使用函数声明来创建一个函数对象 6:使用函数声明创建一个匿名函数 一:函…...
当我们做后仿时我们究竟在仿些什么(三)
异步电路之间必须消除毛刺 之前提到过,数字电路后仿的一个主要目的就是动态验证异步电路时序。异步电路的时序是目前STA工具无法覆盖的。 例如异步复位的release是同步事件,其时序是可以靠STA保证的;但是reset是异步事件,它的时序…...
如何将超大文件压缩到最小
1、一个文件目录,查看属性发现这个文件达到了2.50GB; 2、右键此目录选择添加到压缩文件; 3、在弹出的窗口中将压缩文件格式选择为RAR4,压缩方式选择为最好,选择字典大小最大,勾选压缩选项中的创建固实压缩&…...
[C#]C#最简单方法获取GPU显存真实大小
你是否用下面代码获取GPU显存容量? using System.Management; private void getGpuMem() {ManagementClass c new ManagementClass("Win32_VideoController");foreach (ManagementObject o in c.GetInstances()){string gpuTotalMem String.For…...
【数据结构】红黑树(C++实现)
📝个人主页:Sherry的成长之路 🏠学习社区:Sherry的成长之路(个人社区) 📖专栏链接:数据结构 🎯长路漫漫浩浩,万事皆有期待 上一篇博客:【数据…...
day-64 代码随想录算法训练营(19)图论 part 03
827.最大人工岛 思路一:深度优先遍历 1.深度优先遍历,求出所有岛屿的面积,并且把每个岛屿记上不同标记2.使用 unordered_map 使用键值对,标记:面积,记录岛屿面积3.遍历所有海面,然后进行一次广…...
xss测试步骤总结
文章目录 测试流程1.开启burp2.测试常规xss语句3.观察回显4.测试闭合与绕过Level2Level3Level4Level5Level6Level7 5.xss绕过方法1)测试需观察点2)无过滤法3)">闭合4)单引号闭合事件函数5)双引号闭合事件函数6)引号闭合链接7)大小写绕过8)多写绕过9)unicode编码10)unic…...
2023最新简易ChatGPT3.5小程序全开源源码+全新UI首发+实测可用可二开(带部署教程)
源码简介: 2023最新简易ChatGPT3.5小程序全开源源码全新UI首发,实测可以用,而且可以二次开发。这个是最新ChatGPT智能AI机器人微信小程序源码,同时也带部署教程。 这个全新版本的小界面设计相当漂亮,简单大方&#x…...
【Redis】数据过期策略和数据淘汰策略
数据过期策略和淘汰策略 过期策略 Redis所有的数据结构都可以设置过期时间,时间一到,就会自动删除。 问题:大家都知道,Redis是单线程的,如果同一时间太多key过期,Redis删除的时间也会占用线程的处理时间…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
消防一体化安全管控平台:构建消防“一张图”和APP统一管理
在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...
