当前位置: 首页 > news >正文

OpenGLES:绘制一个混色旋转的3D球体

效果展示

本篇博文会实现一个混色旋转的3D球体

一.球体解析

前面几篇博文讲解了如何使用OpenGLES实现不同的3D图形

本篇博文讲解怎样实现3D世界的代表图形:一个混色旋转的3D球体

1.1 极限正多面体

如果有学习过我前几篇3D图形绘制的博文,就知道要想绘制一个3D图形,首先要做的第一步就是将要绘制的3D图形进行拆解,拆解成能够使用单位图元——三角形进行绘制的各种子图形

然而懂点微积分的都知道,球体本身就可以看作是一个被极限分解的正多面体

所以球面本身就可以使用三角形进行绘制,并不需要拆解成其他子图形

那么,现在要做的就是如何求解球体的顶点坐标。

1.2 求解球体顶点坐标

众所周知,地球上任何一个地方都能用经纬度进行标识

以此类推,先给球体设置一个经纬度

根据经纬度就将球体分解成四边形,再将四边形分解成三角形。

那么求解球体的坐标,就只需要求出四边形的坐标即可。

1.3 球体顶点坐标公式

根据上述讲解和图示,很容易就能得出球体顶点坐标公式:

  • x0 = R * cos(a) * sin(b)
  • y0 = R * sin(a))
  • z0 = R * cos(a) * cos(b)

二.Render:变量定义

2.1 常规变量定义

还是常见的几个变量,跟其他3D图形的常规变量并无差别

//MVP矩阵
private float[] mMVPMatrix = new float[16];//着色器程序/渲染器
private int shaderProgram;//返回属性变量的位置
//MVP变换矩阵属性
private int mvpMatrixLoc;
//位置属性
private int aPositionLocation;
//颜色属性
private int aColorLocation;//surface宽高比
private float ratio;

2.2 定义顶点坐标数组和缓冲

前文中已经讲解,对于球体,并不需要拆解出子图形,而且颜色混合我会在着色器代码中实现,并不会在Render代码中动态加载实现,因此只需要定义一个数组和缓冲,就是顶点坐标。

//球体顶点坐标数组
private float vertexData[];
//顶点缓冲
private FloatBuffer vertexBuffer;

2.3 定义MVP矩阵

//MVP矩阵
private float[] mMVPMatrix = new float[16];

三.Render:着色器、内存分配等

3.1 着色器创建、链接、使用

3.2 着色器属性获取、赋值

3.3 缓冲内存分配

这几个部分的代码实现2D图形绘制基本一致

可参考以前2D绘制的相关博文,里面都有详细的代码实现

不再重复展示代码

四.Render:动态创建顶点

创建顶点时需要传入半径:0.85f

createBallPositions(0.85f);

球体渲染的关键函数: 

createBallPositions(float r):

private void createBallPositions(float r) {// 存放顶点坐标的ArrayListArrayList<Float> alVertix = new ArrayList<Float>();// 将球进行单位切分的角度final int angleSpan = 5;// 纬度angleSpan度一份for (int wAngle = -90; wAngle < 90; wAngle = wAngle + angleSpan) {// 经度angleSpan度一份for (int jAngle = 0; jAngle <= 360; jAngle = jAngle + angleSpan) {// 纵向横向各到一个角度后计算对应的此点在球面上的坐标float x0 = (float) (r * Math.cos(Math.toRadians(wAngle)) * Math.sin(Math.toRadians(jAngle)));float y0 = (float) (r * Math.sin(Math.toRadians(wAngle)));float z0 = (float) (r * Math.cos(Math.toRadians(wAngle)) * Math.cos(Math.toRadians(jAngle)));float x1 = (float) (r * Math.cos(Math.toRadians(wAngle)) * Math.sin(Math.toRadians(jAngle + angleSpan)));float y1 = (float) (r * Math.sin(Math.toRadians(wAngle)));float z1 = (float) (r * Math.cos(Math.toRadians(wAngle)) * Math.cos(Math.toRadians(jAngle + angleSpan)));float x2 = (float) (r * Math.cos(Math.toRadians(wAngle + angleSpan)) * Math.sin(Math.toRadians(jAngle + angleSpan)));float y2 = (float) (r * Math.sin(Math.toRadians(wAngle + angleSpan)));float z2 = (float) (r * Math.cos(Math.toRadians(wAngle + angleSpan)) * Math.cos(Math.toRadians(jAngle + angleSpan)));float x3 = (float) (r * Math.cos(Math.toRadians(wAngle + angleSpan)) * Math.sin(Math.toRadians(jAngle)));float y3 = (float) (r * Math.sin(Math.toRadians(wAngle + angleSpan)));float z3 = (float) (r * Math.cos(Math.toRadians(wAngle + angleSpan)) * Math.cos(Math.toRadians(jAngle)));// 将计算出来的XYZ坐标加入存放顶点坐标的ArrayListalVertix.add(x1);alVertix.add(y1);alVertix.add(z1);alVertix.add(x0);alVertix.add(y0);alVertix.add(z0);alVertix.add(x2);alVertix.add(y2);alVertix.add(z2);alVertix.add(x3);alVertix.add(y3);alVertix.add(z3);/*2---------------3|             / ||          /    ||       /       ||    /          || /             |1---------------0*/}}float f[] = new float[alVertix.size()];for (int i = 0; i < f.length; i++) {f[i] = alVertix.get(i);}vertexData = f;
}

五.Render:绘制

5.1 MVP矩阵

//MVP矩阵赋值
mMVPMatrix = TransformUtils.getBallMVPMatrix(ratio);
//将变换矩阵传入顶点渲染器
glUniformMatrix4fv(mvpMatrixLoc, 1, false, mMVPMatrix, 0);

getBallMVPMatrix(float ratio)

依然采用的是视椎体透视投影:

public static float[] getBallMVPMatrix(float ratio) {float[] modelMatrix = getIdentityMatrix(16, 0); //模型变换矩阵float[] modelMatrix0 = getIdentityMatrix(16, 0); //模型变换矩阵float[] viewMatrix = getIdentityMatrix(16, 0); //观测变换矩阵/相机矩阵float[] projectionMatrix = getIdentityMatrix(16, 0); //投影变换矩阵mBallRotateAgree = (mBallRotateAgree + 1.0f) % 360;Matrix.setRotateM(modelMatrix, 0, mBallRotateAgree, 1, 0, 1);Matrix.translateM(modelMatrix0,0,0.0f,0.3f,0.3f);Matrix.multiplyMM(modelMatrix, 0, modelMatrix, 0, modelMatrix0, 0);Matrix.setLookAtM(viewMatrix, 0, 0, 0, 3, 0f, 0f, 0f, 0f, 1.0f, 0.0f);Matrix.frustumM(projectionMatrix, 0, -ratio, ratio, -1, 1, 1, 10);float[] tmpMatrix = new float[16];float[] mvpMatrix = new float[16];Matrix.multiplyMM(tmpMatrix, 0, viewMatrix, 0, modelMatrix, 0);Matrix.multiplyMM(mvpMatrix, 0, projectionMatrix, 0, tmpMatrix, 0);return mvpMatrix;
}

5.2 绘制球体

//准备顶点坐标内存
glVertexAttribPointer(aPositionLocation, 3, GL_FLOAT, false, 0, vertexBuffer);
//绘制
glDrawArrays(GL_TRIANGLE_STRIP, 0, vertexData.length / 3);

六.着色器代码

(1).ball_vertex_shader.glsl
#version 300 eslayout (location = 0) in vec4 vPosition;
layout (location = 1) in vec4 aColor;uniform mat4 u_Matrix;out vec4 vColor;void main() {gl_Position  = u_Matrix*vPosition;float x = vPosition.x;float y = vPosition.y;float z = vPosition.z;//效果较真实vColor = vec4(x, y, z, 0.0);
}
(2).ball_fragtment_shader.glsl
#version 300 es
#extension GL_OES_EGL_image_external_essl3 : require
precision mediump float;in vec4 vColor;out vec4 outColor;void main(){outColor = vColor;
}

八.结束语

混色旋转3D球体的绘制过程到此讲解结束了

最终实现出来的效果如同开头效果展示

相关文章:

OpenGLES:绘制一个混色旋转的3D球体

效果展示 本篇博文会实现一个混色旋转的3D球体 一.球体解析 前面几篇博文讲解了如何使用OpenGLES实现不同的3D图形 本篇博文讲解怎样实现3D世界的代表图形&#xff1a;一个混色旋转的3D球体 1.1 极限正多面体 如果有学习过我前几篇3D图形绘制的博文&#xff0c;就知道要想…...

Spring AOP 基于注解源码整理

导入配置类 EnableAspectJAutoProxy 注解导入 AspectJAutoProxyRegistrarImportBeanDefinitionRegistrar#registerBeanDefinitions向容器中加入AnnotationAwareAspectJAutoProxyCreatorAnnotationAwareAspectJAutoProxyCreator#initBeanFactory初始化ReflectiveAspectJAdvisor…...

C语言 —— 函数栈帧的创建和销毁

在我们之前学习函数的时候&#xff0c;我们可能有很多困惑? 比如: 局部变量是怎么创建的?为什么局部变量的值是随机值?函数是怎么传参的?传参的顺序是怎样的?形参和实参是什么关系?函数调用是怎么做的?函数调用是结束后怎么返回的? 那么要解决这些问题, 我们就需要知道…...

Appleid苹果账号自动解锁改密(自动解锁二验改密码)

目前该项目能实现以下功能&#xff1a; 多用户使用&#xff0c;权限控制多账号管理账号分享页&#xff0c;支持设置密码、有效期、自定义HTML内容自动解锁与关闭二步验证自动/定时修改密码自动删除Apple ID中的设备代理池与Selenium集群&#xff0c;提高解锁成功率允许手动触发…...

Conflicting peer dependency: eslint@8.50.0

npm install 输出 npm ERR! code ERESOLVE npm ERR! ERESOLVE could not resolve npm ERR! npm ERR! While resolving: vue/eslint-config-standard6.1.0 npm ERR! Found: eslint-plugin-vue8.7.1 npm ERR! node_modules/eslint-plugin-vue npm ERR! dev eslint-plugin-vue…...

Vue3 defineProps使用

MyTag.vue <script setup> import { ref, nextTick, defineProps, defineEmits } from "vue"; const props defineProps({flag: Boolean,title: String, }); // 写成这样也可以 // const props defineProps(["flag", "title"]);const e…...

机器学习7:逻辑回归

一、说明 逻辑回归模型是处理分类问题的最常见机器学习模型之一。二项式逻辑回归只是逻辑回归模型的一种类型。它指的是两个变量的分类&#xff0c;其中概率用于确定二元结果&#xff0c;因此“二项式”中的“bi”。结果为真或假 — 0 或 1。 二项式逻辑回归的一个例子是预测人…...

生活小记-纸张尺寸

A系列纸张&#xff1a; A0&#xff1a;841 x 1189 毫米A1&#xff1a;594 x 841 毫米A2&#xff1a;420 x 594 毫米A3&#xff1a;297 x 420 毫米A4&#xff1a;210 x 297 毫米A5&#xff1a;148 x 210 毫米A6&#xff1a;105 x 148 毫米A7&#xff1a;74 x 105 毫米A8&#xf…...

【MATLAB源码-第41期】基于压缩感知算法的OFDM系统信道估计和LS算法对比仿真。

操作环境&#xff1a; MATLAB 2013b 1、算法描述 压缩感知&#xff08;Compressed Sensing, CS&#xff09;是一种从稀疏或可压缩信号中重构完整信号的数学理论和技术。下面详细介绍压缩感知和它在OFDM信道估计中的应用。 1. 压缩感知基本概念 在传统采样理论中&#xff0…...

优思学院|六西格玛将烹饪和美味提升至极致

最近&#xff0c;我们曾提到一个美国男子如何利用六西格玛来控制糖尿病。这表明六西格玛逐渐被认为是一个不仅可以在工作场所之外使用&#xff0c;尤其不仅限于制造业的系统。 六西格玛的核心理念是改进过程的质量&#xff0c;从而改善最终结果。如果你做了晚餐或尝试了一道新…...

git stash

git stash 是 Git 中一个非常有用的命令&#xff0c;用于临时保存当前工作目录中的修改&#xff0c;以便你可以切换到其他分支或处理其他任务而不丢失你的修改。它的主要用途是&#xff1a; 保存未提交的修改&#xff1a;你可以使用 git stash 命令将未提交的修改&#xff08;包…...

Flink Data Source

Flink Data Source 一、内置 Data Source Flink Data Source 用于定义 Flink 程序的数据来源,Flink 官方提供了多种数据获取方法,用于帮助开发者简单快速地构建输入流,具体如下: 1.1 基于文件构建 1. readTextFile(path):按照 TextInputFormat 格式读取文本文件,并将…...

怒刷LeetCode的第23天(Java版)

目录 第一题 题目来源 题目内容 解决方法 方法一&#xff1a;贪心算法 方法二&#xff1a;动态规划 方法三&#xff1a;回溯算法 方法四&#xff1a;并查集 第二题 题目来源 题目内容 解决方法 方法一&#xff1a;排序和遍历 方法二&#xff1a;扫描线算法 方法…...

Golang 中的调试技巧

掌握有效的策略和工具&#xff0c;实现顺畅的开发 调试是每位开发人员都必须掌握的关键技能。它是识别、隔离和解决代码库中问题的过程。在 Golang 的世界中&#xff0c;掌握有效的调试技巧可以显著提升您的开发工作流程&#xff0c;并帮助您创建更可靠和健壮的应用程序。在本…...

linux 监控内存利用率

监控内存利用率 使用free来分析CPU使用信息 #!/bin/bashDATE$(date %F" "%H:%M)IP$(ifconfig eth0 |awk -F [ :] /inet addr/{print $4}) MAIL"examplemail.com"TOTAL$(free -m |awk /Mem/{print $2})USE$(free -m |awk /Mem/{print $3-$6-$7})FREE$(($TO…...

43 验证二叉搜索树

验证二叉搜索树 理解题意&#xff1a;验证搜索二叉树&#xff1a;中序遍历是升序题解1 递归&#xff08;学习学习&#xff01;&#xff09;题解2 中序遍历&#xff08;保持升序&#xff09; 给你一个二叉树的根节点 root &#xff0c;判断其是否是一个 有效的二叉搜索树。 有…...

深度学习笔记之微积分及绘图

深度学习笔记之微积分及绘图 学习资料来源&#xff1a;微积分 %matplotlib inline from matplotlib_inline import backend_inline from mxnet import np, npx from d2l import mxnet as d2lnpx.set_np()def f(x):return 3 * x ** 2 - 4 * xdef numerical_lim(f, x, h):retur…...

java Spring Boot按日期 限制大小分文件记录日志

上文 java Spring Boot 将日志写入文件中记录 中 我们实现另一个将控制台日志写入到 项目本地文件的效果 但是 这里有个问题 比如 我项目是个大体量的企业项目 每天会有一百万用户访问 那我每天的日志都记载同一个文件上 那不跟没记没什么区别吗&#xff1f; 东西怎么找&#x…...

CSS 语法

CSS 实例 CSS 规则由两个主要的部分构成&#xff1a;选择器&#xff0c;以及一条或多条声明: 选择器通常是您需要改变样式的 HTML 元素。 每条声明由一个属性和一个值组成。 属性&#xff08;property&#xff09;是您希望设置的样式属性&#xff08;style attribute&#x…...

Vue3+TS+ECharts5实现中国地图数据信息显示

1.引言 最近在做一个管理系统&#xff0c;主要技术栈使用的是Vue3TSViteElementPlus&#xff0c;主要参考项目是yudao-ui-admin-vue3&#xff0c;其中用到ECharts5做数字大屏&#xff0c;展示中国地图相关信息&#xff0c;以此基础做一个分享&#xff0c;写下这篇文章。 &quo…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...

【Veristand】Veristand环境安装教程-Linux RT / Windows

首先声明&#xff0c;此教程是针对Simulink编译模型并导入Veristand中编写的&#xff0c;同时需要注意的是老用户编译可能用的是Veristand Model Framework&#xff0c;那个是历史版本&#xff0c;且NI不会再维护&#xff0c;新版本编译支持为VeriStand Model Generation Suppo…...

热烈祝贺埃文科技正式加入可信数据空间发展联盟

2025年4月29日&#xff0c;在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上&#xff0c;可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞&#xff0c;强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...

绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化

iOS 应用的发布流程一直是开发链路中最“苹果味”的环节&#xff1a;强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说&#xff0c;这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发&#xff08;例如 Flutter、React Na…...

手动给中文分词和 直接用神经网络RNN做有什么区别

手动分词和基于神经网络&#xff08;如 RNN&#xff09;的自动分词在原理、实现方式和效果上有显著差异&#xff0c;以下是核心对比&#xff1a; 1. 实现原理对比 对比维度手动分词&#xff08;规则 / 词典驱动&#xff09;神经网络 RNN 分词&#xff08;数据驱动&#xff09…...