当前位置: 首页 > news >正文

OpenGLES:绘制一个混色旋转的3D球体

效果展示

本篇博文会实现一个混色旋转的3D球体

一.球体解析

前面几篇博文讲解了如何使用OpenGLES实现不同的3D图形

本篇博文讲解怎样实现3D世界的代表图形:一个混色旋转的3D球体

1.1 极限正多面体

如果有学习过我前几篇3D图形绘制的博文,就知道要想绘制一个3D图形,首先要做的第一步就是将要绘制的3D图形进行拆解,拆解成能够使用单位图元——三角形进行绘制的各种子图形

然而懂点微积分的都知道,球体本身就可以看作是一个被极限分解的正多面体

所以球面本身就可以使用三角形进行绘制,并不需要拆解成其他子图形

那么,现在要做的就是如何求解球体的顶点坐标。

1.2 求解球体顶点坐标

众所周知,地球上任何一个地方都能用经纬度进行标识

以此类推,先给球体设置一个经纬度

根据经纬度就将球体分解成四边形,再将四边形分解成三角形。

那么求解球体的坐标,就只需要求出四边形的坐标即可。

1.3 球体顶点坐标公式

根据上述讲解和图示,很容易就能得出球体顶点坐标公式:

  • x0 = R * cos(a) * sin(b)
  • y0 = R * sin(a))
  • z0 = R * cos(a) * cos(b)

二.Render:变量定义

2.1 常规变量定义

还是常见的几个变量,跟其他3D图形的常规变量并无差别

//MVP矩阵
private float[] mMVPMatrix = new float[16];//着色器程序/渲染器
private int shaderProgram;//返回属性变量的位置
//MVP变换矩阵属性
private int mvpMatrixLoc;
//位置属性
private int aPositionLocation;
//颜色属性
private int aColorLocation;//surface宽高比
private float ratio;

2.2 定义顶点坐标数组和缓冲

前文中已经讲解,对于球体,并不需要拆解出子图形,而且颜色混合我会在着色器代码中实现,并不会在Render代码中动态加载实现,因此只需要定义一个数组和缓冲,就是顶点坐标。

//球体顶点坐标数组
private float vertexData[];
//顶点缓冲
private FloatBuffer vertexBuffer;

2.3 定义MVP矩阵

//MVP矩阵
private float[] mMVPMatrix = new float[16];

三.Render:着色器、内存分配等

3.1 着色器创建、链接、使用

3.2 着色器属性获取、赋值

3.3 缓冲内存分配

这几个部分的代码实现2D图形绘制基本一致

可参考以前2D绘制的相关博文,里面都有详细的代码实现

不再重复展示代码

四.Render:动态创建顶点

创建顶点时需要传入半径:0.85f

createBallPositions(0.85f);

球体渲染的关键函数: 

createBallPositions(float r):

private void createBallPositions(float r) {// 存放顶点坐标的ArrayListArrayList<Float> alVertix = new ArrayList<Float>();// 将球进行单位切分的角度final int angleSpan = 5;// 纬度angleSpan度一份for (int wAngle = -90; wAngle < 90; wAngle = wAngle + angleSpan) {// 经度angleSpan度一份for (int jAngle = 0; jAngle <= 360; jAngle = jAngle + angleSpan) {// 纵向横向各到一个角度后计算对应的此点在球面上的坐标float x0 = (float) (r * Math.cos(Math.toRadians(wAngle)) * Math.sin(Math.toRadians(jAngle)));float y0 = (float) (r * Math.sin(Math.toRadians(wAngle)));float z0 = (float) (r * Math.cos(Math.toRadians(wAngle)) * Math.cos(Math.toRadians(jAngle)));float x1 = (float) (r * Math.cos(Math.toRadians(wAngle)) * Math.sin(Math.toRadians(jAngle + angleSpan)));float y1 = (float) (r * Math.sin(Math.toRadians(wAngle)));float z1 = (float) (r * Math.cos(Math.toRadians(wAngle)) * Math.cos(Math.toRadians(jAngle + angleSpan)));float x2 = (float) (r * Math.cos(Math.toRadians(wAngle + angleSpan)) * Math.sin(Math.toRadians(jAngle + angleSpan)));float y2 = (float) (r * Math.sin(Math.toRadians(wAngle + angleSpan)));float z2 = (float) (r * Math.cos(Math.toRadians(wAngle + angleSpan)) * Math.cos(Math.toRadians(jAngle + angleSpan)));float x3 = (float) (r * Math.cos(Math.toRadians(wAngle + angleSpan)) * Math.sin(Math.toRadians(jAngle)));float y3 = (float) (r * Math.sin(Math.toRadians(wAngle + angleSpan)));float z3 = (float) (r * Math.cos(Math.toRadians(wAngle + angleSpan)) * Math.cos(Math.toRadians(jAngle)));// 将计算出来的XYZ坐标加入存放顶点坐标的ArrayListalVertix.add(x1);alVertix.add(y1);alVertix.add(z1);alVertix.add(x0);alVertix.add(y0);alVertix.add(z0);alVertix.add(x2);alVertix.add(y2);alVertix.add(z2);alVertix.add(x3);alVertix.add(y3);alVertix.add(z3);/*2---------------3|             / ||          /    ||       /       ||    /          || /             |1---------------0*/}}float f[] = new float[alVertix.size()];for (int i = 0; i < f.length; i++) {f[i] = alVertix.get(i);}vertexData = f;
}

五.Render:绘制

5.1 MVP矩阵

//MVP矩阵赋值
mMVPMatrix = TransformUtils.getBallMVPMatrix(ratio);
//将变换矩阵传入顶点渲染器
glUniformMatrix4fv(mvpMatrixLoc, 1, false, mMVPMatrix, 0);

getBallMVPMatrix(float ratio)

依然采用的是视椎体透视投影:

public static float[] getBallMVPMatrix(float ratio) {float[] modelMatrix = getIdentityMatrix(16, 0); //模型变换矩阵float[] modelMatrix0 = getIdentityMatrix(16, 0); //模型变换矩阵float[] viewMatrix = getIdentityMatrix(16, 0); //观测变换矩阵/相机矩阵float[] projectionMatrix = getIdentityMatrix(16, 0); //投影变换矩阵mBallRotateAgree = (mBallRotateAgree + 1.0f) % 360;Matrix.setRotateM(modelMatrix, 0, mBallRotateAgree, 1, 0, 1);Matrix.translateM(modelMatrix0,0,0.0f,0.3f,0.3f);Matrix.multiplyMM(modelMatrix, 0, modelMatrix, 0, modelMatrix0, 0);Matrix.setLookAtM(viewMatrix, 0, 0, 0, 3, 0f, 0f, 0f, 0f, 1.0f, 0.0f);Matrix.frustumM(projectionMatrix, 0, -ratio, ratio, -1, 1, 1, 10);float[] tmpMatrix = new float[16];float[] mvpMatrix = new float[16];Matrix.multiplyMM(tmpMatrix, 0, viewMatrix, 0, modelMatrix, 0);Matrix.multiplyMM(mvpMatrix, 0, projectionMatrix, 0, tmpMatrix, 0);return mvpMatrix;
}

5.2 绘制球体

//准备顶点坐标内存
glVertexAttribPointer(aPositionLocation, 3, GL_FLOAT, false, 0, vertexBuffer);
//绘制
glDrawArrays(GL_TRIANGLE_STRIP, 0, vertexData.length / 3);

六.着色器代码

(1).ball_vertex_shader.glsl
#version 300 eslayout (location = 0) in vec4 vPosition;
layout (location = 1) in vec4 aColor;uniform mat4 u_Matrix;out vec4 vColor;void main() {gl_Position  = u_Matrix*vPosition;float x = vPosition.x;float y = vPosition.y;float z = vPosition.z;//效果较真实vColor = vec4(x, y, z, 0.0);
}
(2).ball_fragtment_shader.glsl
#version 300 es
#extension GL_OES_EGL_image_external_essl3 : require
precision mediump float;in vec4 vColor;out vec4 outColor;void main(){outColor = vColor;
}

八.结束语

混色旋转3D球体的绘制过程到此讲解结束了

最终实现出来的效果如同开头效果展示

相关文章:

OpenGLES:绘制一个混色旋转的3D球体

效果展示 本篇博文会实现一个混色旋转的3D球体 一.球体解析 前面几篇博文讲解了如何使用OpenGLES实现不同的3D图形 本篇博文讲解怎样实现3D世界的代表图形&#xff1a;一个混色旋转的3D球体 1.1 极限正多面体 如果有学习过我前几篇3D图形绘制的博文&#xff0c;就知道要想…...

Spring AOP 基于注解源码整理

导入配置类 EnableAspectJAutoProxy 注解导入 AspectJAutoProxyRegistrarImportBeanDefinitionRegistrar#registerBeanDefinitions向容器中加入AnnotationAwareAspectJAutoProxyCreatorAnnotationAwareAspectJAutoProxyCreator#initBeanFactory初始化ReflectiveAspectJAdvisor…...

C语言 —— 函数栈帧的创建和销毁

在我们之前学习函数的时候&#xff0c;我们可能有很多困惑? 比如: 局部变量是怎么创建的?为什么局部变量的值是随机值?函数是怎么传参的?传参的顺序是怎样的?形参和实参是什么关系?函数调用是怎么做的?函数调用是结束后怎么返回的? 那么要解决这些问题, 我们就需要知道…...

Appleid苹果账号自动解锁改密(自动解锁二验改密码)

目前该项目能实现以下功能&#xff1a; 多用户使用&#xff0c;权限控制多账号管理账号分享页&#xff0c;支持设置密码、有效期、自定义HTML内容自动解锁与关闭二步验证自动/定时修改密码自动删除Apple ID中的设备代理池与Selenium集群&#xff0c;提高解锁成功率允许手动触发…...

Conflicting peer dependency: eslint@8.50.0

npm install 输出 npm ERR! code ERESOLVE npm ERR! ERESOLVE could not resolve npm ERR! npm ERR! While resolving: vue/eslint-config-standard6.1.0 npm ERR! Found: eslint-plugin-vue8.7.1 npm ERR! node_modules/eslint-plugin-vue npm ERR! dev eslint-plugin-vue…...

Vue3 defineProps使用

MyTag.vue <script setup> import { ref, nextTick, defineProps, defineEmits } from "vue"; const props defineProps({flag: Boolean,title: String, }); // 写成这样也可以 // const props defineProps(["flag", "title"]);const e…...

机器学习7:逻辑回归

一、说明 逻辑回归模型是处理分类问题的最常见机器学习模型之一。二项式逻辑回归只是逻辑回归模型的一种类型。它指的是两个变量的分类&#xff0c;其中概率用于确定二元结果&#xff0c;因此“二项式”中的“bi”。结果为真或假 — 0 或 1。 二项式逻辑回归的一个例子是预测人…...

生活小记-纸张尺寸

A系列纸张&#xff1a; A0&#xff1a;841 x 1189 毫米A1&#xff1a;594 x 841 毫米A2&#xff1a;420 x 594 毫米A3&#xff1a;297 x 420 毫米A4&#xff1a;210 x 297 毫米A5&#xff1a;148 x 210 毫米A6&#xff1a;105 x 148 毫米A7&#xff1a;74 x 105 毫米A8&#xf…...

【MATLAB源码-第41期】基于压缩感知算法的OFDM系统信道估计和LS算法对比仿真。

操作环境&#xff1a; MATLAB 2013b 1、算法描述 压缩感知&#xff08;Compressed Sensing, CS&#xff09;是一种从稀疏或可压缩信号中重构完整信号的数学理论和技术。下面详细介绍压缩感知和它在OFDM信道估计中的应用。 1. 压缩感知基本概念 在传统采样理论中&#xff0…...

优思学院|六西格玛将烹饪和美味提升至极致

最近&#xff0c;我们曾提到一个美国男子如何利用六西格玛来控制糖尿病。这表明六西格玛逐渐被认为是一个不仅可以在工作场所之外使用&#xff0c;尤其不仅限于制造业的系统。 六西格玛的核心理念是改进过程的质量&#xff0c;从而改善最终结果。如果你做了晚餐或尝试了一道新…...

git stash

git stash 是 Git 中一个非常有用的命令&#xff0c;用于临时保存当前工作目录中的修改&#xff0c;以便你可以切换到其他分支或处理其他任务而不丢失你的修改。它的主要用途是&#xff1a; 保存未提交的修改&#xff1a;你可以使用 git stash 命令将未提交的修改&#xff08;包…...

Flink Data Source

Flink Data Source 一、内置 Data Source Flink Data Source 用于定义 Flink 程序的数据来源,Flink 官方提供了多种数据获取方法,用于帮助开发者简单快速地构建输入流,具体如下: 1.1 基于文件构建 1. readTextFile(path):按照 TextInputFormat 格式读取文本文件,并将…...

怒刷LeetCode的第23天(Java版)

目录 第一题 题目来源 题目内容 解决方法 方法一&#xff1a;贪心算法 方法二&#xff1a;动态规划 方法三&#xff1a;回溯算法 方法四&#xff1a;并查集 第二题 题目来源 题目内容 解决方法 方法一&#xff1a;排序和遍历 方法二&#xff1a;扫描线算法 方法…...

Golang 中的调试技巧

掌握有效的策略和工具&#xff0c;实现顺畅的开发 调试是每位开发人员都必须掌握的关键技能。它是识别、隔离和解决代码库中问题的过程。在 Golang 的世界中&#xff0c;掌握有效的调试技巧可以显著提升您的开发工作流程&#xff0c;并帮助您创建更可靠和健壮的应用程序。在本…...

linux 监控内存利用率

监控内存利用率 使用free来分析CPU使用信息 #!/bin/bashDATE$(date %F" "%H:%M)IP$(ifconfig eth0 |awk -F [ :] /inet addr/{print $4}) MAIL"examplemail.com"TOTAL$(free -m |awk /Mem/{print $2})USE$(free -m |awk /Mem/{print $3-$6-$7})FREE$(($TO…...

43 验证二叉搜索树

验证二叉搜索树 理解题意&#xff1a;验证搜索二叉树&#xff1a;中序遍历是升序题解1 递归&#xff08;学习学习&#xff01;&#xff09;题解2 中序遍历&#xff08;保持升序&#xff09; 给你一个二叉树的根节点 root &#xff0c;判断其是否是一个 有效的二叉搜索树。 有…...

深度学习笔记之微积分及绘图

深度学习笔记之微积分及绘图 学习资料来源&#xff1a;微积分 %matplotlib inline from matplotlib_inline import backend_inline from mxnet import np, npx from d2l import mxnet as d2lnpx.set_np()def f(x):return 3 * x ** 2 - 4 * xdef numerical_lim(f, x, h):retur…...

java Spring Boot按日期 限制大小分文件记录日志

上文 java Spring Boot 将日志写入文件中记录 中 我们实现另一个将控制台日志写入到 项目本地文件的效果 但是 这里有个问题 比如 我项目是个大体量的企业项目 每天会有一百万用户访问 那我每天的日志都记载同一个文件上 那不跟没记没什么区别吗&#xff1f; 东西怎么找&#x…...

CSS 语法

CSS 实例 CSS 规则由两个主要的部分构成&#xff1a;选择器&#xff0c;以及一条或多条声明: 选择器通常是您需要改变样式的 HTML 元素。 每条声明由一个属性和一个值组成。 属性&#xff08;property&#xff09;是您希望设置的样式属性&#xff08;style attribute&#x…...

Vue3+TS+ECharts5实现中国地图数据信息显示

1.引言 最近在做一个管理系统&#xff0c;主要技术栈使用的是Vue3TSViteElementPlus&#xff0c;主要参考项目是yudao-ui-admin-vue3&#xff0c;其中用到ECharts5做数字大屏&#xff0c;展示中国地图相关信息&#xff0c;以此基础做一个分享&#xff0c;写下这篇文章。 &quo…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...