当前位置: 首页 > news >正文

OpenCV 概念、整体架构、各模块主要功能

文章目录

  • 1. OpenCV 概念
  • 2 OpenCV主要模块
  • 3 各模块 详细介绍
    • 3.1 calib3d 标定
    • 3.2 core 核心功能模块
    • 3.4 features2d 二维特征
    • 3.5 flann 快速近似近邻算法库
    • 3.7 highgui 高级图形用户界面
    • 3.9 imgproc 图像处理模块
    • 3.10 ml 机器学习模块
    • 3.11 objdetect 目标检测模块
    • 3.12 photo 数码照片的处理
    • 3.13 stitching 图像拼接模块
    • 3.14 video 视频分析
    • 3.15 videoio 视频文件的输入和输出
    • 3.16 人脸和对象识别
    • 3.17 表面匹配

相关文章:

OpenCV 概念、整体架构、各模块主要功能

文章目录 1. OpenCV 概念2 OpenCV主要模块3 各模块 详细介绍3.1 calib3d 标定3.2 core 核心功能模块3.4 features2d 二维特征3.5 flann 快速近似近邻算法库3.7 highgui 高级图形用户界面3.9 imgproc 图像处理模块3.10 ml 机器学习模块3.11 objdetect 目标检测模块3.12 photo 数…...

组合数与莫队——组合数前缀和

用莫队求组合数是一种常见套路 莫队求 S ( n , m ) ∑ i 0 m ( n i ) S(n,m)\sum_{i0}^m\binom n i S(n,m)∑i0m​(in​) S ( n , m 1 ) S(n,m1) S(n,m1) 直接做个差,然后就相当于加上 ( n i 1 ) \binom n {i1} (i1n​) 求 S ( n 1 , m ) S(n1,m) S(n1,m)…...

stm32之雨滴传感器使用记录

一、简介 雨滴传感器、烟雾传感器(MQ2)、轨迹传感器、干黄管等的原理都类似,都是将检测到的信号通过LM393进行处理之后再输出,可以输出数字信号DO(0和1)和模拟信号A0。 雨滴传感器在正常情况下是AO输出的是…...

华硕平板k013me176cx线刷方法

1.下载adb刷机工具, 或者刷机精灵 2.下载刷机rom包 华硕asus k013 me176cx rom固件刷机包-CSDN博客 3.平板进入刷机界面 进入方法参考: ASUS (k013) ME176CX不进入系统恢复出厂设置的方法-CSDN博客 4.解压ME176C-CN-3_2_23_182.zip,把UL-K013-CN-3.2.…...

C#停车场管理系统

目录 一、绪论1.1内容简介及意义1.2开发工具及技术介绍 二、总体设计2.1系统总体架构2.2登录模块总体设计2.3主界面模块总体设计2.4停车证管理模块总体设计2.5停车位管理模块总体设计2.6员工管理模块总体设计2.7其他模块总体设计 三、详细设计3.1登录模块设计3.2主界面模块设计…...

C++:stl:stack、queue、priority_queue介绍及模拟实现和容量适配器deque介绍

本文主要介绍c中stl的栈、队列和优先级队列并对其模拟实现,对deque进行一定介绍并在栈和队列的模拟实现中使用。 目录 一、stack的介绍和使用 1.stack的介绍 2.stack的使用 3.stack的模拟实现 二、queue的介绍和使用 1.queue的介绍 2.queue的使用 3.queue的…...

​【Java】面向对象程序设计 课程笔记 面向对象基础

🚀Write In Front🚀 📝个人主页:令夏二十三 🎁欢迎各位→点赞👍 收藏⭐️ 留言📝 📣系列专栏:Java 💬总结:希望你看完之后,能对你有…...

Hive【Hive(五)函数-高级聚合函数、炸裂函数】

高级聚合函数 多进一出(多行输入,一个输出) 普通聚合函数:count、sum ... 1)collect_list():收集并形成 list 集合,结果不去重 select sex,collect_list(job) from e…...

zabbix(二)

文章目录 1. zabbix自定义监控项【配置】2. zabbix自定义监控项【传参】3. zabbix自定义触发器4. zabbix邮件告警4. zabbix企业微信告警 1. zabbix自定义监控项【配置】 目前有主机zabbix-server: 10.0.0.10 zabbix-slave: 10.0.0.11 zabbix监控的内容,想平滑转移到…...

容器安全检测工具KubeHound使用

前言 Kubernetes集群攻击路径AES工具 安装 下载kubehound git clone https://github.com/DataDog/KubeHound.git 安装docker compose插件 Docker compose插件安装_信安成长日记的博客-CSDN博客 启动kubehound后端服务 即要开大内存,不然db起不来&#xff0c…...

机器学习笔记 - 基于强化学习的贪吃蛇玩游戏

一、关于深度强化学习 如果不了解深度强化学习的一般流程的可以考虑看一下下面的链接。因为这里的示例因为在PyTorch 之上实现深度强化学习算法。 机器学习笔记 - Deep Q-Learning算法概览深度Q学习是一种强化学习算法,它使用深度神经网络来逼近Q函数,用于确定在给定状态下采…...

C++_pen_类

类的成员函数 构造函数析构函数普通成员函数 构造函数与析构函数 #include <stdio.h> class STU{ public:STU(){printf("STU\n");}STU(int id){printf("STU(int id)\n");}~STU(){printf("STU Bye!!!\n");} };int main(int argc, char c…...

MySQL 多表关联查询优化实践和原理解析

目录 一、前言二、表数据准备三、表关联查询原理和两种算法3.1、研究关联查询算法必备知识点3.2、嵌套循环连接 Nested-Loop Join(NLJ) 算法3.3、基于块的嵌套循环连接 Block Nested-Loop Join(BNL)算法3.4、被驱动表的关联字段没索引为什么要选择使用 BNL 算法而不使用 Nested…...

LeNet网络复现

文章目录 1. LeNet历史背景1.1 早期神经网络的挑战1.2 LeNet的诞生背景 2. LeNet详细结构2.1 总览2.2 卷积层与其特点2.3 子采样层&#xff08;池化层&#xff09;2.4 全连接层2.5 输出层及激活函数 3. LeNet实战复现3.1 模型搭建model.py3.2 训练模型train.py3.3 测试模型test…...

Oracle 慢查询排查步骤

目录 1. Oracle 慢查询排查步骤1.1. 前言1.2. 排查步骤1.2.1. 查询慢查询日志1.2.2. Oracle 查询 SQL 语句执行的耗时1.2.3. 定位系统里面哪些 SQL 脚本存在 TABLE ACCESS FULL (扫全表) 行为1.2.4. 查看索引情况1.2.5. 查看锁的竞争情况1.2.6. 其他锁语句 1.3. 慢查询优化1.3.…...

互联网Java工程师面试题·MyBatis 篇·第二弹

目录 16、Xml 映射文件中&#xff0c;除了常见的 select|insert|updae|delete标签之外&#xff0c;还有哪些标签&#xff1f; 17、Mybatis 的 Xml 映射文件中&#xff0c;不同的 Xml 映射文件&#xff0c;id 是否可以重复&#xff1f; 18、为什么说 Mybatis 是半自动 ORM 映射…...

Linux 下如何调试代码

debug 和 release 在Linux下的默认模式是什么&#xff1f; 是release模式 那你怎么证明他就是release版本? 我们知道如果一个程序可以被调试&#xff0c;那么它一定是debug版本&#xff0c;如果它是release版本&#xff0c;它是没法被调试的&#xff0c;所以说我们可以来调试一…...

腾讯云服务器简介和使用流程

腾讯云服务器在云服务器CVM或轻量应用服务器页面自定义购买价格比较贵&#xff0c;但是自定义购买云服务器CPU内存带宽配置选择范围广&#xff0c;活动上购买只能选择固定的活动机&#xff0c;选择范围窄&#xff0c;但是云服务器价格便宜比较省钱。腾讯云服务器网来详细说下腾…...

python 二分查找

1.二分查找首先被查找的序列是一个有序的。 2.明确序列的左右边界 3.找出序列中间的元素&#xff0c;判断如果是要查找的元素&#xff0c;返回元素 4.如果中间元素&#xff0c;大于或者小于查找的元素&#xff0c;那么改变左右边间&#xff0c;直到中间的数等于查找的元素。…...

通过async方式在浏览器中调用web worker

通过async方式在浏览器中调用web worker 近年来&#xff0c;网络应用程序变得越来越复杂&#xff0c;增加了越来越多的功能。因此&#xff0c;性能和响应性已成为 Web 开发人员关注的重点。解决这个问题的一个办法是使用web worker。 web worker简介 web worker是一个 javas…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...