当前位置: 首页 > news >正文

基于阴阳对优化的BP神经网络(分类应用) - 附代码

基于阴阳对优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于阴阳对优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.阴阳对优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 阴阳对算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用阴阳对算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.阴阳对优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 阴阳对算法应用

阴阳对算法原理请参考:https://blog.csdn.net/u011835903/article/details/108295616

阴阳对算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从阴阳对算法的收敛曲线可以看到,整体误差是不断下降的,说明阴阳对算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

相关文章:

基于阴阳对优化的BP神经网络(分类应用) - 附代码

基于阴阳对优化的BP神经网络(分类应用) - 附代码 文章目录 基于阴阳对优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.阴阳对优化BP神经网络3.1 BP神经网络参数设置3.2 阴阳对算法应用 4.测试结果&#x…...

Spring bean定义Spring Bean 的作用域

Spring bean定义 目录 Spring bean定义 Spring配置元数据 Spring Bean 的作用域 singleton作用域: 原型作用域: 示例: 形成应用程序的骨干是由Spring IoC容器所管理的对象称为bean。bean被实例化,组装,并通过Sprin…...

代码随想录 动态规划 part16

583. 两个字符串的删除操作 给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。 每步 可以删除任意一个字符串中的一个字符。 思路:dp[i][j]数组表示使得 word1[:i] 和 word2[:j] 相同所需的最小步数。当word1[i-1]word2[…...

非 Prop 的属性

概念 父组件传给子组件的属性&#xff0c;但该属性没有在子组件 props 属性里定义。 属性继承 非 Prop 的属性默认情况下会被子组件的根节点继承&#xff0c;非 prop 的属性会保存在子组件 $attrs 属性里。 举例 子组件 date-picker 如下 <!-- 我是子组件 date-picker --&…...

初识Java 12-3 流

目录 终结操作 将流转换为一个数组&#xff08;toArray&#xff09; 在每个流元素上应用某个终结操作&#xff08;forEach&#xff09; 收集操作&#xff08;collect&#xff09; 组合所有的流元素&#xff08;reduce&#xff09; 匹配&#xff08;*Match&#xff09; 选…...

代码随想录算法训练营第42天|动态规划:01背包理论基础、动态规划:01背包理论基础(滚动数组)、416. 分割等和子集

动态规划&#xff1a;01背包理论基础 动态规划&#xff1a;01背包理论基础&#xff08;滚动数组&#xff09; 以上两个问题的代码未本地化保存 416. 分割等和子集 https://leetcode.cn/problems/partition-equal-subset-sum/ 复杂的解法 class Solution { public:bool ca…...

(详解)Linux常见基本指令(1)

目录 目录&#xff1a; 1:有关路径文件下的操作(查看&#xff0c;进入) 1.1 ls 1.2 pwd 1.3 cd 2:创建文件或目录 2.1 touch 2.2 mkdir 3:删除文件或目录 3.1 rm与rmdir 4:复制剪切文件 4.1 cp 4.2 mv 1:有关路径的操作 1 ls 指令 语法&#xff1a;ls [选项] [目录或文…...

紫光同创FPGA图像视频采集系统,提供2套PDS工程源码和技术支持

目录 1、前言免责声明 2、紫光同创FPGA相关方案推荐3、设计思路框架视频源选择OV7725摄像头配置及采集OV5640摄像头配置及采集动态彩条HDMA图像缓存输入输出视频HDMA缓冲FIFOHDMA控制模块 HDMI输出 4、PDS工程1详解&#xff1a;OV7725输入5、PDS工程2详解&#xff1a;OV5640输入…...

第一章 函数 极限 连续(解题方法须背诵)

&#xff08;一&#xff09;求极限的常用方法 方法1 利用有理运算法则求极限 方法2 利用基本极限求极限 方法3 利用等价无穷小求极限 方法4 利用洛必达法则求极限 方法5 利用泰勒公式求极限 方法6 利用夹逼准则求极限 方法7 利用定积分的定义求极限 方法8 利用单调有界…...

selenium +IntelliJ+firefox/chrome 环境全套搭配

1第一步&#xff1a;下载IntelliJ idea 代码编辑器 2第二步&#xff1a;下载浏览器Chrome 3第三步&#xff1a;下载JDK 4第四步&#xff1a;配置环境变量&#xff08;1JAVA_HOME 2 path&#xff09; 5第五步&#xff1a;下载Maven 6第六步&#xff1a;配置环境变量&#x…...

CentOS 7 停止维护后如何平替你的生产系统?

Author&#xff1a;rab 目录 前言一、Debian 家族1.1 Debian1.2 Ubuntu 二、RHEL 家族2.1 Red Hat Enterprise Linux2.2 Fedora2.3 CentOS2.4 Rocky Linux2.5 AlmaLinux 三、如何选择&#xff1f;思考&#xff1f; 前言 CentOS 8 系统 2021 年 12 月 31 日已停止维护服务&…...

第81步 时间序列建模实战:Adaboost回归建模

基于WIN10的64位系统演示 一、写在前面 这一期&#xff0c;我们介绍AdaBoost回归。 同样&#xff0c;这里使用这个数据&#xff1a; 《PLoS One》2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndr…...

135.【JUC并发编程_01】

JUC 并发编程 (一)、基本概述1.概述 (二)、进程与线程1.进程与线程(1).进程_介绍(2).线程_介绍(3).进程与线程的区别 2.并行和并发(1).并发_介绍(2).并行_介绍(3).并行和并发的区别 3.应用(1).异步调用_较少等待时间(2).多线程_提高效率 (三)、Java 线程1.创建线程和运行线程(1…...

VC++创建windows服务程序

目录 1.关于windows标准可执行程序和服务程序 2.服务相关整理 2.1 VC编写服务 2.2 服务注册 2.3 服务卸载 2.4 启动服务 2.5 关闭服务 2.6 sc命令 2.7 查看服务 3.标准程序 3.1 后台方式运行标准程序 3.2 查找进程 3.3 终止进程 以前经常在Linux下编写服务器程序…...

连续爆轰发动机

0.什么是爆轰 其反应区前沿为一激波。反应区连同前驱激波称为爆轰波。爆轰波扫过后&#xff0c;反应区介质成为高温高压的爆轰产物。能够发生爆轰的系统可以是气相、液相、固相或气-液、气-固和液-固等混合相组成的系统。通常把液、固相的爆轰系统称为炸药。 19世纪80年代初&a…...

交通物流模型 | 基于时空注意力融合网络的城市轨道交通假期短时客流预测

短时轨道交通客流预测对于交通运营管理非常重要。新兴的深度学习模型有效提高了预测精度。然而,大部分现有模型主要针对常规工作日或周末客流进行预测。由于假期客流的突发性和无规律性,仅有一小部分研究专注于假期客流预测。为此,本文提出一个全新的时空注意力融合网络(ST…...

2.2.1 嵌入式工程师必备软件

1 文件比较工具 在开发过程中,不论是对代码的对比,还是对log的对比,都是必不可不少的,通过对比,我们可以迅速找到差异,定位问题。当前常用的对比工具有:WinMerge,Diffuse,Beyond Compare,Altova DiffDog,AptDiff,Code Compare等。这里推荐使用Beyond Compare,它不…...

深入了解 RabbitMQ:高性能消息中间件

目录 引言&#xff1a;一、RabbitMQ 介绍二、核心概念三、工作原理四、应用场景五、案例实战 引言&#xff1a; 在现代分布式系统中&#xff0c;消息队列成为了实现系统间异步通信、削峰填谷以及解耦组件的重要工具。而RabbitMQ作为一个高效可靠的消息队列解决方案&#xff0c;…...

【数据库——MySQL】(14)过程式对象程序设计——游标、触发器

目录 1. 游标1.1 声明游标1.2 打开游标1.3 读取游标1.4 关闭游标1.5 游标示例 2. 触发器2.1 创建触发器2.2 修改触发器2.3 删除触发器2.4 触发器类型2.5 触发器示例 参考书籍 1. 游标 游标一般和存储过程一起配合使用。 1.1 声明游标 要使用游标&#xff0c;需要用到 DECLAR…...

位移贴图和法线贴图的区别

位移贴图和法线贴图都是用于增强模型表面细节和真实感的纹理贴图技术&#xff0c;但是它们之间也存在着差异。 1、什么是位移贴图 位移贴图&#xff1a;位移贴图通过在模型顶点上定义位移值来改变模型表面的形状。该贴图包含了每个像素的高度值信息&#xff0c;使得模型的细节…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...

【1】跨越技术栈鸿沟:字节跳动开源TRAE AI编程IDE的实战体验

2024年初&#xff0c;人工智能编程工具领域发生了一次静默的变革。当字节跳动宣布退出其TRAE项目&#xff08;一款融合大型语言模型能力的云端AI编程IDE&#xff09;时&#xff0c;技术社区曾短暂叹息。然而这一退场并非终点——通过开源社区的接力&#xff0c;TRAE在WayToAGI等…...

el-amap-bezier-curve运用及线弧度设置

文章目录 简介示例线弧度属性主要弧度相关属性其他相关样式属性完整示例链接简介 ‌el-amap-bezier-curve 是 Vue-Amap 组件库中的一个组件,用于在 高德地图 上绘制贝塞尔曲线。‌ 基本用法属性path定义曲线的路径,可以是多个弧线段的组合。stroke-weight线条的宽度。stroke…...

python学习day39

图像数据与显存 知识点回顾 1.图像数据的格式&#xff1a;灰度和彩色数据 2.模型的定义 3.显存占用的4种地方 a.模型参数梯度参数 b.优化器参数 c.数据批量所占显存 d.神经元输出中间状态 4.batchisize和训练的关系 import torch import torchvision import torch.nn as nn imp…...

FTPS、HTTPS、SMTPS以及WebSockets over TLS的概念及其应用场景

一、什么是FTPS&#xff1f; FTPS&#xff0c;英文全称File Transfer Protocol with support for Transport Layer Security (SSL/TLS)&#xff0c;安全文件传输协议&#xff0c;是一种对常用的文件传输协议(FTP)添加传输层安全(TLS)和安全套接层(SSL)加密协议支持的扩展协议。…...

C++信息学竞赛中常用函数的一般用法

在C 信息学竞赛中&#xff0c;有许多常用函数能大幅提升编程效率。下面为你介绍一些常见函数及其一般用法&#xff1a; 一、比较函数 1、max()//求出a&#xff0c;b的较大值 int a10,b5,c;cmax(a,b);//得出的结果就是c等于10. 2、min()//求出a&#xff0c;b的较小值 int a1…...

uni-app学习笔记三十--request网络请求传参

request用于发起网络请求。 OBJECT 参数说明 参数名类型必填默认值说明平台差异说明urlString是开发者服务器接口地址dataObject/String/ArrayBuffer否请求的参数App 3.3.7 以下不支持 ArrayBuffer 类型headerObject否设置请求的 header&#xff0c;header 中不能设置 Refere…...