当前位置: 首页 > news >正文

【算法|动态规划No.12】leetcode152. 乘积最大子数组

个人主页:兜里有颗棉花糖
欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创
收录于专栏【手撕算法系列专栏】【LeetCode】
🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助
🍓希望我们一起努力、成长,共同进步。
在这里插入图片描述

目录

  • 1️⃣题目描述
  • 2️⃣题目解析
  • 3️⃣解题代码

1️⃣题目描述

给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。

测试用例的答案是一个 32-位 整数。

子数组 是数组的连续子序列。

示例1:

输入: nums = [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。

示例2:

输入: nums = [-2,0,-1]
输出: 0
解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。

注意:

  • 1 <= nums.length <= 2 * 104
  • -10 <= nums[i] <= 10
  • nums 的任何前缀或后缀的乘积都 保证 是一个 32-位 整数

2️⃣题目解析

虽然本题目要求的是求取乘积最大子数组,但是我们还得把乘积最小的情况求取出来。为什么呢?因为不只是正数 * 正数 > 0,还有负数 * 负数 = 正数的情况。

状态表示:

  • f[i]表示以i位置为结尾的所有子数组的最大乘积
  • g[i]表示以i位置为结尾的所有子数组的最小乘积

状态转移方程:

  • f[i] = max(max(nums[i],f[i - 1] * nums[i - 1]),g[i - 1] * nums[i - 1]);
  • g[i] = min(min(nums[i],f[i - 1] * nums[i - 1]),g[i - 1] * nums[i - 1]);

3️⃣解题代码

class Solution {
public:int maxProduct(vector<int>& nums) {int n = nums.size();vector<int> f(n+1);auto g = f;f[0] = g[0] = 1;int ret = INT_MIN;for(int i = 1;i <= n;i++){int a = nums[i - 1];int b = f[i - 1] * nums[i - 1];int c = g[i - 1] * nums[i - 1];f[i] = max(max(a,b),c);g[i] = min(min(a,b),c);ret = max(ret,f[i]);}return ret;}
};

通过啦!!!
在这里插入图片描述

相关文章:

【算法|动态规划No.12】leetcode152. 乘积最大子数组

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&#xff0c;希望…...

Covert Communication 与选择波束(毫米波,大规模MIMO,可重构全息表面)

Covert Communication for Spatially Sparse mmWave Massive MIMO Channels 2023 TOC abstract 隐蔽通信&#xff0c;也称为低检测概率通信&#xff0c;旨在为合法用户提供可靠的通信&#xff0c;并防止任何其他用户检测到合法通信的发生。出于下一代通信系统安全链路的强烈…...

计算机毕业设计 基于协调过滤算法的绿色食品推荐系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…...

华为云云耀云服务器L实例评测|部署在线影音媒体系统 Jellyfin

华为云云耀云服务器L实例评测&#xff5c;部署在线影音媒体系统 Jellyfin 一、云耀云服务器L实例介绍1.1 云服务器介绍1.2 产品规格1.3 应用场景1.4 支持镜像 二、云耀云服务器L实例配置2.1 重置密码2.2 服务器连接2.3 安全组配置 三、部署 Jellyfin3.1 Jellyfin 介绍3.2 Docke…...

GhostNet原理解析及pytorch实现

论文&#xff1a;https://arxiv.org/abs/1911.11907 源码&#xff1a;https://github.com/huawei-noah/ghostnet 简要论述GhostNet的核心内容。 Ghost Net 1、Introduction 在训练良好的深度神经网络的特征图中&#xff0c;丰富甚至冗余的信息通常保证了对输入数据的全面理…...

视频二维码的制作方法,支持内容修改编辑

现在学生经常会需要使用音视频二维码&#xff0c;比如外出打开、才艺展示、课文背诵等等。那么如何制作一个可以长期使用的二维码呢&#xff1f;下面来给大家分享一个二维码制作&#xff08;免费在线二维码生成器-二维码在线制作-音视频二维码在线生成工具-机智熊二维码&#x…...

清华GLM部署记录

环境部署 首先安装anaconda&#xff08;建议包管理比较方便&#xff09;windows用户需手动配置一下环境变量&#xff0c;下面默认是在ubuntu环境说明创建python环境&#xff0c;conda create -n your_env_name python3.10 (注&#xff1a;官方是提供是python3.8&#xff0c;但…...

贪心算法+练习

正值国庆之际&#xff0c;祝愿祖国繁荣昌盛&#xff0c;祝愿朋友一生平安&#xff01;终身学习&#xff0c;奋斗不息&#xff01; 目录 1.贪心算法简介 2.贪心算法的特点 3.如何学习贪心算法 题目练习&#xff08;持续更新&#xff09; 1.柠檬水找零&#xff08;easy&…...

使用华为eNSP组网试验⑷-OSPF多区域组网

今天进行了OSPF的多区域组网试验&#xff0c;本来这是个很简单的操作&#xff0c;折腾了好长时间&#xff0c;根本原因只是看了别人写的配置代码&#xff0c;没有真正弄明白里面对应的规则。 一般情况下&#xff0c;很多单位都使用OSPF进行多区域的组网&#xff0c;大体分为1个…...

P1843 奶牛晒衣服 【贪心】

P1843 奶牛晒衣服 【贪心】 题目背景 熊大妈决定给每个牛宝宝都穿上可爱的婴儿装 。但是由于衣服很湿&#xff0c;为牛宝宝晒衣服就成了很不爽的事情。于是&#xff0c;熊大妈请你&#xff08;奶牛&#xff09;帮助她完成这个重任。 题目描述 一件衣服在自然条件下用一秒的时间…...

91、Redis - 事务 与 订阅-发布 相关的命令 及 演示

★ 事务相关的命令 Redis事务保证事务内的多条命令会按顺序作为整体执行&#xff0c;其他客户端发出的请求绝不可能被插入到事务处理的中间&#xff0c; 这样可以保证事务内所有命令作为一个隔离操作被执行。 Redis事务同样具有原子性&#xff0c;事务内所有命令要么全部被执…...

GPU如何成为AI的加速器

0. 前言 按照国际惯例&#xff0c;首先声明&#xff1a;本文只是我自己学习的理解&#xff0c;虽然参考了他人的宝贵见解&#xff0c;但是内容可能存在不准确的地方。如果发现文中错误&#xff0c;希望批评指正&#xff0c;共同进步。 本文关键词&#xff1a;GPU、深度学习、GP…...

Map声明、元素访问及遍历、⼯⼚模式、实现 Set - GO语言从入门到实战

Map声明、元素访问及遍历 - GO语言从入门到实战 Map 声明的方式 m := map[string]int{"one": 1, "two": 2, "three": 3} //m初始化时就已经设置了3个键值对,所以它的初始长度len(m)是3。m1 := map[string]int{} //m1被初始化为一个空的m…...

机器人中的数值优化|【七】线性搜索牛顿共轭梯度法、可信域牛顿共轭梯度法

机器人中的数值优化|【七】线性搜索牛顿共轭梯度法、可信域牛顿共轭梯度法 Line Search Newton-CG, Trust Region Newton-CG 往期回顾 机器人中的数值优化|【一】数值优化基础 机器人中的数值优化|【二】最速下降法&#xff0c;可行牛顿法的python实现&#xff0c;以Rosenbro…...

websocket实现go(server)与c#(client)通讯

go 服务端 使用到github.com/gorilla/websocket package mainimport ("fmt""github.com/gorilla/websocket""log""net/http" )func main() {var upgrader websocket.Upgrader{ReadBufferSize: 1024,WriteBufferSize: 1024,CheckOr…...

洛谷题目题解详细解答

洛谷是一个很不错的刷题软件&#xff0c;可是找不到合适的题解是个大麻烦&#xff0c;大家有啥可以私信问我&#xff0c;以下是我已经通过的题目。 你如果有哪一题不会&#xff08;最好是我通过过的&#xff0c;我没过的也没关系&#xff09;&#xff0c;可以私信我&#xff0…...

【C语言】八大排序算法

文章目录 一、冒泡排序1、定义2、思想及图解3、代码 二、快速排序1、hoare版本2、挖坑法3、前后指针法4、非递归快排5、快速排序优化1&#xff09;三数取中选key值2&#xff09;小区间优化 三、直接插入排序1、定义2、代码 四、希尔排序1、定义2、图解3、代码 五、选择排序1、排…...

2023年中国智能电视柜产量、需求量、市场规模及行业价格走势[图]

电视柜是随着电视机的发展和普及而演变出的家具种类&#xff0c;其主要作用是承载电视机&#xff0c;又称视听柜&#xff0c;随着生活水平的提高&#xff0c;与电视机相配套的电器设备也成为电视柜的收纳对象。 随着智能家具的发展&#xff0c;智能电视机柜的造型和风格都是有了…...

docker容器使用初体验

我们写程序时&#xff0c;都会搭建相关的环境&#xff0c;比如写了一个web&#xff0c;使用了tomcat、nginx等&#xff0c;现在想要把程序部署到云服务器或者在其他电脑上运行&#xff0c;就需要重新部署一遍环境&#xff0c;尤其是项目开源后&#xff0c;上手成本大。 docker…...

React Hooks ——性能优化Hooks

什么是Hooks Hooks从语法上来说是一些函数。这些函数可以用于在函数组件中引入状态管理和生命周期方法。 React Hooks的优点 简洁 从语法上来说&#xff0c;写的代码少了上手非常简单 基于函数式编程理念&#xff0c;只需要掌握一些JavaScript基础知识与生命周期相关的知识不…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...