当前位置: 首页 > news >正文

堆的初步认识

在学习本节文章前要先了解:大顶堆与小顶堆: (优先级队列_加瓦不加班的博客-CSDN博客)

堆实现

计算机科学中,堆是一种基于树的数据结构,通常用完全二叉树实现。

什么叫完全二叉树?

答:

1.除了最后一层不用满足有两个分支,其他层都要满足有两个分支

2.如果再往完全二叉树中加一个节点,那么必须靠左添加,从左往右依次填满,左边没有填满之前,右边就不能填,如图:

添加前:

添加后:

堆的特性如下:堆分为两种:大顶堆与小顶堆

  • 在大顶堆中,任意节点 C 与它的父节点 P 符合 P.value >= C.value:父节点的值>=子节点的值

  • 而小顶堆中,任意节点 C 与它的父节点 P 符合 P.value <= C.value:父节点的值<=子节点的值

  • 最顶层的节点(没有父亲)称之为 root 根节点

例1 - 满二叉树(Full Binary Tree)特点:每一层都是填满的

例2 - 完全二叉树(Complete Binary Tree)特点:最后一层可能未填满,靠左对齐

大顶堆

大顶堆中,任意节点 C 与它的父节点 P 符合 P.value >= C.value:父节点的值>=子节点的值

代码实现:


/*** @BelongsProject: arithmetic* @BelongsPackage: com.hzp.algorithm.heap* @Author: ASUS* @CreateTime: 2023-10-02  10:41* @Description: TODO 大顶堆Plus_增加了堆化等方法* @Version: 1.0*/
public class MaxHeap {int[] array;int size;public MaxHeap(int capacity) {this.array = new int[capacity];}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {//注意:当传入的数组是null时,我们可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int top = array[0];swap(0, size - 1);size--;//从索引位置0开始下潜down(0);return top;}private boolean isEmpty(){if(size==0){return true;}return false;}/*** 删除指定索引处元素  这个方法与删除堆顶元素方法思路一样** @param index 索引* @return 被删除元素*/public int poll(int index) {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素* @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素* @return 是否添加成功*/public boolean offer(int offered) {if (size == array.length) {return false;}up(offered);size++;return true;}//向堆的尾部添加元素: 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;if (offered > array[parent]) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public MaxHeap(int[] array) {this.array = array;this.size = array.length;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点 :套用公式 size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int max = parent;//left < size:必须是有效的索引  不可能超出数组最大长度吧if (left < size && array[left] > array[max]) {max = left;}if (right < size && array[right] > array[max]) {max = right;}if (max != parent) { // 找到了更大的孩子swap(max, parent);down(max);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}public static void main(String[] args) {
//        int[] array = {1, 2, 3, 4, 5, 6, 7};
//        MaxHeap maxHeap = new MaxHeap(array);
//        System.out.println(Arrays.toString(maxHeap.array));//TODO 利用堆来实现排序//1. heapify 建立大顶堆//2. 将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆//3. 重复第二步直至堆里剩一个元素int[] array = {1, 2, 3, 4, 5, 6, 7};//1. heapify 建立大顶堆MaxHeap maxHeap = new MaxHeap(array);System.out.println(Arrays.toString(maxHeap.array));//3. 重复第二步直至堆里剩一个元素while(maxHeap.size>1){//将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆maxHeap.swap(0, maxHeap.size-1);maxHeap.size--;maxHeap.down(0);}System.out.println(Arrays.toString(maxHeap.array));}
}

 

小顶堆

小顶堆中,任意节点 C 与它的父节点 P 符合 P.value <= C.value:父节点的值<=子节点的值

代码实现:

/*** @BelongsProject: arithmetic* @BelongsPackage: com.hzp.algorithm.heap* @Author: ASUS* @CreateTime: 2023-10-02  10:41* @Description: TODO 小顶堆Plus_增加了堆化等方法* @Version: 1.0*/
public class MinHeap {int[] array;int size;public MinHeap(int capacity) {this.array = new int[capacity];}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {//注意:当传入的数组是null时,我们可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int top = array[0];swap(0, size - 1);size--;//从索引位置0开始下潜down(0);return top;}private boolean isEmpty(){if(size==0){return true;}return false;}public boolean isFull(){return size==array.length;}/*** 删除指定索引处元素  这个方法与删除堆顶元素方法思路一样** @param index 索引* @return 被删除元素*/public int poll(int index) {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素* @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素* @return 是否添加成功*/public boolean offer(int offered) {if (size == array.length) {return false;}up(offered);size++;return true;}//向堆的尾部添加元素: 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;if (offered < array[parent]) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public MinHeap(int[] array) {this.array = array;this.size = array.length;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点 :套用公式 size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int min = parent;//left < size:必须是有效的索引  不可能超出数组最大长度吧if (left < size && array[left] < array[min]) {min = left;}if (right < size && array[right] < array[min]) {min = right;}if (min != parent) { // 找到了更大的孩子swap(min, parent);down(min);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}public static void main(String[] args) {
//        int[] array = {1, 2, 3, 4, 5, 6, 7};
//        MaxHeap maxHeap = new MaxHeap(array);
//        System.out.println(Arrays.toString(maxHeap.array));//1. heapify 建立小顶堆//2. 将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆//3. 重复第二步直至堆里剩一个元素int[] array = {1, 2, 3, 4, 5, 6, 7};//1. heapify 建立大顶堆MinHeap maxHeap = new MinHeap(array);System.out.println(Arrays.toString(maxHeap.array));//3. 重复第二步直至堆里剩一个元素while(maxHeap.size>1){//将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆maxHeap.swap(0, maxHeap.size-1);maxHeap.size--;maxHeap.down(0);}System.out.println(Arrays.toString(maxHeap.array));}
}

完全二叉树可以使用数组来表示

那完全二叉树显然是个非线性的数据结构,但是它存储的时候可以使用线性的数组结构来存储数据:

特征

  • 如果从索引 0 开始存储节点数据

    • 节点 i 的父节点为 floor((i-1)/2),当 i>0 时

    • 节点 i 的左子节点为 2i+1,右子节点为 2i+2,当然它们得 < size

  • 如果从索引 1 开始存储节点数据

    • 节点 i 的父节点为 floor(i/2),当 i > 1 时

    • 节点 i 的左子节点为 2i,右子节点为 2i+1,同样得 < size

堆的优化​​​​​​​

以大顶堆为例,相对于之前的优先级队列,增加了堆化等方法:

public class MaxHeap {int[] array;int size;public MaxHeap(int capacity) {this.array = new int[capacity];}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {//注意:当传入的数组是null时,我们可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行int top = array[0];swap(0, size - 1);size--;//从索引位置0开始下潜down(0);return top;}/*** 删除指定索引处元素  这个方法与删除堆顶元素方法思路一样** @param index 索引* @return 被删除元素*/public int poll(int index) {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素* @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素* @return 是否添加成功*/public boolean offer(int offered) {if (size == array.length) {return false;}up(offered);size++;return true;}//向堆的尾部添加元素: 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;if (offered > array[parent]) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public MaxHeap(int[] array) {this.array = array;this.size = array.length;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点 :套用公式 size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int max = parent;//left < size:必须是有效的索引  不可能超出数组最大长度吧if (left < size && array[left] > array[max]) {max = left;}if (right < size && array[right] > array[max]) {max = right;}if (max != parent) { // 找到了更大的孩子swap(max, parent);down(max);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}public static void main(String[] args) {int[] array = {1, 2, 3, 4, 5, 6, 7};MaxHeap maxHeap = new MaxHeap(array);System.out.println(Arrays.toString(maxHeap.array));}
}

Floyd 建堆算法作者(也是之前龟兔赛跑判环作者):

如果对龟兔赛跑判环不了解的可以查看此文章:

  1. 找到最后一个非叶子节点 (叶子节点:没有孩子的节点

  2. 从后向前,对每个节点执行下潜

一些规律

  • 一棵满二叉树节点个数为 2^h-1,如下例中高度 h=3 节点数是 2^3-1=7

  • 非叶子节点范围为 [0, size/2-1]

算法时间复杂度分析

下面看交换次数的推导:设节点高度为 3

每一层的交换次数为:节点个数*此节点交换次数,总的交换次数为

即 h:总高度 i:本层高度

在 Wolfram|Alpha: Computational Intelligence 输入

Sum[\(40)Divide[Power[2,x],Power[2,i]]*\(40)i-1\(41)\(41),{i,1,x}]

推导出

通用堆

通用heap :可以扩容的 heap, max 用于指定是大顶堆还是小顶堆
/*** @BelongsProject: arithmetic* @BelongsPackage: com.hzp.algorithm.heap* @Author: ASUS* @CreateTime: 2023-10-02  15:56* @Description: TODO 通用heap :可以扩容的 heap, max 用于指定是大顶堆还是小顶堆* @Version: 1.0*/
public class Heap {int[] array;int size;boolean max;public int size() {return size;}//当max为true则为大顶堆  如果是false则为小顶堆public Heap(int capacity, boolean max) {this.array = new int[capacity];this.max = max;}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {int top = array[0];swap(0, size - 1);size--;down(0);return top;}/*** 删除指定索引处元素** @param index 索引* @return 被删除元素*/public int poll(int index) {int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素** @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素*/public void offer(int offered) {if (size == array.length) {grow();}up(offered);size++;}//如果容量不够就进行扩容private void grow() {int capacity = size + (size >> 1);int[] newArray = new int[capacity];//将原有的数组重新放到扩容好的数组中System.arraycopy(array, 0,newArray, 0, size);array = newArray;}// 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;boolean cmp = max ? offered > array[parent] : offered < array[parent];if (cmp) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public Heap(int[] array, boolean max) {this.array = array;this.size = array.length;this.max = max;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点  size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int min = parent;if (left < size && (max ? array[left] > array[min] : array[left] < array[min])) {min = left;}if (right < size && (max ? array[right] > array[min] : array[right] < array[min])) {min = right;}if (min != parent) { // 找到了更大的孩子swap(min, parent);down(min);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}}

 

相关文章:

堆的初步认识

在学习本节文章前要先了解&#xff1a;大顶堆与小顶堆&#xff1a; &#xff08;优先级队列_加瓦不加班的博客-CSDN博客&#xff09; 堆实现 计算机科学中&#xff0c;堆是一种基于树的数据结构&#xff0c;通常用完全二叉树实现。 什么叫完全二叉树&#xff1f; 答&#x…...

CycleGAN模型之Pytorch实战

一、CycleGAN基本介绍 1. CycleGAN论文:《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》 2. 原文代码:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix 3. 网传精简代码:https://github.com/aitorzip/PyTorch-CycleGAN …...

C++(STL容器适配器)

前言&#xff1a; 适配器也称配接器&#xff08;adapters&#xff09;在STL组件的灵活组合运用功能上&#xff0c;扮演着轴承、转换器的角色。 《Design Patterns》对adapter的定义如下&#xff1a;将一个class的接口转换为另一个class的接口&#xff0c;使原本因接口不兼容而…...

软考 系统架构设计师系列知识点之软件架构风格(7)

接前一篇文章&#xff1a;软考 系统架构设计师系列知识点之软件架构风格&#xff08;6&#xff09; 这个十一注定是一个不能放松、保持“紧”的十一。由于报名了全国计算机技术与软件专业技术资格&#xff08;水平&#xff09;考试&#xff0c;11月4号就要考试&#xff0c;因此…...

【Vue3】自定义指令

除了 Vue 内置的一系列指令 (比如 v-model 或 v-show) 之外&#xff0c;Vue 还允许你注册自定义的指令 (Custom Directives)。 1. 生命周期钩子函数 一个自定义指令由一个包含类似组件生命周期钩子的对象来定义。钩子函数会接收到指令所绑定元素作为其参数。 在 <script …...

UG\NX CAM二次开发 加工模块获取 UF _ask_application_module

文章作者:代工 来源网站:NX CAM二次开发专栏 简介: UG\NX CAM二次开发 加工模块获取 UF _ask_application_module 代码: void MyClass::do_it() { // TODO: add your code here // 获取NX当前所在的模块 int module_id = 0; // UF_ask_application_module(&…...

借助GPU算力编译Android

借助GPU算力编译Android 借助GPU编译Android代码的意义在于提高编译的效率和速度。传统的CPU编译方式在处理大量代码时可能会遇到性能瓶颈,而GPU编译利用了显卡的并行计算能力,可以同时处理多个任务,加快编译过程。通过利用GPU的并行计算能力,可以将编译过程中的多个任务分…...

docker-compose一键部署mysql

1.创建安装目录 mnt为硬盘挂载目录&#xff0c;根据实际情况修改 mkdir -p /mnt/mysql cd /mnt/mysql vim docker-compose.yml2.编写docker-compose.yml version: 3.1 services:db:image: mysql:5.7 #mysql版本volumes:- ./data/db:/var/lib/mysql #数据文件- ./etc/my.cnf:/…...

MATLAB 函数签名器

文章目录 MATLAB 函数签名器注释规范模板参数类型 kind数据格式 type选项的支持 使用可执行程序封装为m函数程序输出 编译待办事项推荐阅读附录 MATLAB 函数签名器 MATLAB 函数签名器 (FUNCSIGN) &#xff0c;在规范注释格式的基础上为函数文件或类文件自动生成函数签名&#…...

2019强网杯随便注bugktu sql注入

一.2019强网杯随便注入 过滤了一些函数&#xff0c;联合查询&#xff0c;报错&#xff0c;布尔&#xff0c;时间等都不能用了&#xff0c;尝试堆叠注入 1.通过判断是单引号闭合 ?inject1-- 2.尝试堆叠查询数据库 ?inject1;show databases;-- 3.查询数据表 ?inject1;show …...

Html+Css+Js计算时间差,返回相差的天/时/分/秒(从未来的一个日期时间到当前日期时间的差)。

Html部分 <!DOCTYPE html> <html><head><meta charset"utf-8" /><title></title><link rel"stylesheet" type"text/css" href"css/index.css" /><script src"js/index.js" t…...

mybatis项目启动报错:reader entry: ���� = v

问题再现 解决方案一 由于指定的VFS没有找&#xff0c;mybatis启用了默认的DefaultVFS&#xff0c;然后由于DefaultVFS的内部逻辑&#xff0c;从而导致了reader entry乱码。 去掉mybatis配置文件中关于别名的配置&#xff0c;然后在mapper.xml文件中使用完整的类名。 待删除的…...

【GIT版本控制】--什么是版本控制

一、为什么需要版本控制&#xff1f; 版本控制是在软件开发和许多其他领域中非常重要的工具&#xff0c;因为它解决了许多与协作、追踪更改和管理项目相关的问题。以下是一些主要原因&#xff0c;解释了为什么需要版本控制&#xff1a; 追踪更改历史: 版本控制系统允许您准确…...

ChatGPT付费创作系统V2.3.4独立版 +WEB端+ H5端 + 小程序最新前端

人类小徐提供的GPT付费体验系统最新版系统是一款基于ThinkPHP框架开发的AI问答小程序&#xff0c;是基于国外很火的ChatGPT进行开发的Ai智能问答小程序。当前全民热议ChatGPT&#xff0c;流量超级大&#xff0c;引流不要太简单&#xff01;一键下单即可拥有自己的GPT&#xff0…...

GEE16: 区域日均降水量计算

Precipitation 1. 区域日均降水量计算2. 降水时间序列3. 降水数据年度时间序列对比分析 1. 区域日均降水量计算 今天分析一个计算区域日均降水量的方法&#xff1a; 数据信息&#xff1a;   Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a…...

打开MySQL数据库

在命令行里输入mysql --version就可以查看&#xff1a; mysql -uroot -p之前设置的密码&#xff08;不用输入&#xff09;就可登录成功&#xff1a;...

玩转ChatGPT:DALL·E 3生成图像

一、写在前面 好久不更新咯&#xff0c;因为没有什么有意思的东西分享的。 今天更新&#xff0c;是因为GPT整合了自家的图像生成工具&#xff0c;名字叫作DALLE 3。 DALLE 3是OpenAI推出的一种生成图像的模型&#xff0c;它基于GPT-3架构进行训练&#xff0c;但是它的主要目…...

小程序入门笔记(一) 黑马程序员前端微信小程序开发教程

微信小程序基本介绍 小程序和普通网页有以下几点区别&#xff1a; 运行环境&#xff1a;小程序可以在手机的操作系统上直接运行&#xff0c;如微信、支付宝等&#xff1b;而普通网页需要在浏览器中打开才能运行。 开发技术&#xff1a;小程序采用前端技术进行开发&#xff0c;…...

【进程管理】初识进程

一.何为进程 教材一般会给出这样的答案: 运行起来的程序 或者 内存中的程序 这样说太抽象了&#xff0c;那我问程序和进程有什么区别呢&#xff1f;诶&#xff1f;这我知道&#xff0c;书上说&#xff0c;动态的叫进程&#xff0c;静态的叫程序。那么静态和动态又是什么意思…...

ArcGIS Maps SDK for JS:监听按钮点击事件控制图层的visible属性

文章目录 1 需求描述2 解决方案 1 需求描述 现在有这么一个需求&#xff1a;在地图中添加一些图层&#xff0c;添加图层列表按钮。打开图层列表后用户会打开某些图层使其可见&#xff0c;要求关闭图层列表时&#xff0c;隐藏某些图层&#xff08;若visibletrue&#xff09; 2…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能

指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...

云安全与网络安全:核心区别与协同作用解析

在数字化转型的浪潮中&#xff0c;云安全与网络安全作为信息安全的两大支柱&#xff0c;常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异&#xff0c;并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全&#xff1a;聚焦于保…...