当前位置: 首页 > news >正文

堆的初步认识

在学习本节文章前要先了解:大顶堆与小顶堆: (优先级队列_加瓦不加班的博客-CSDN博客)

堆实现

计算机科学中,堆是一种基于树的数据结构,通常用完全二叉树实现。

什么叫完全二叉树?

答:

1.除了最后一层不用满足有两个分支,其他层都要满足有两个分支

2.如果再往完全二叉树中加一个节点,那么必须靠左添加,从左往右依次填满,左边没有填满之前,右边就不能填,如图:

添加前:

添加后:

堆的特性如下:堆分为两种:大顶堆与小顶堆

  • 在大顶堆中,任意节点 C 与它的父节点 P 符合 P.value >= C.value:父节点的值>=子节点的值

  • 而小顶堆中,任意节点 C 与它的父节点 P 符合 P.value <= C.value:父节点的值<=子节点的值

  • 最顶层的节点(没有父亲)称之为 root 根节点

例1 - 满二叉树(Full Binary Tree)特点:每一层都是填满的

例2 - 完全二叉树(Complete Binary Tree)特点:最后一层可能未填满,靠左对齐

大顶堆

大顶堆中,任意节点 C 与它的父节点 P 符合 P.value >= C.value:父节点的值>=子节点的值

代码实现:


/*** @BelongsProject: arithmetic* @BelongsPackage: com.hzp.algorithm.heap* @Author: ASUS* @CreateTime: 2023-10-02  10:41* @Description: TODO 大顶堆Plus_增加了堆化等方法* @Version: 1.0*/
public class MaxHeap {int[] array;int size;public MaxHeap(int capacity) {this.array = new int[capacity];}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {//注意:当传入的数组是null时,我们可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int top = array[0];swap(0, size - 1);size--;//从索引位置0开始下潜down(0);return top;}private boolean isEmpty(){if(size==0){return true;}return false;}/*** 删除指定索引处元素  这个方法与删除堆顶元素方法思路一样** @param index 索引* @return 被删除元素*/public int poll(int index) {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素* @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素* @return 是否添加成功*/public boolean offer(int offered) {if (size == array.length) {return false;}up(offered);size++;return true;}//向堆的尾部添加元素: 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;if (offered > array[parent]) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public MaxHeap(int[] array) {this.array = array;this.size = array.length;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点 :套用公式 size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int max = parent;//left < size:必须是有效的索引  不可能超出数组最大长度吧if (left < size && array[left] > array[max]) {max = left;}if (right < size && array[right] > array[max]) {max = right;}if (max != parent) { // 找到了更大的孩子swap(max, parent);down(max);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}public static void main(String[] args) {
//        int[] array = {1, 2, 3, 4, 5, 6, 7};
//        MaxHeap maxHeap = new MaxHeap(array);
//        System.out.println(Arrays.toString(maxHeap.array));//TODO 利用堆来实现排序//1. heapify 建立大顶堆//2. 将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆//3. 重复第二步直至堆里剩一个元素int[] array = {1, 2, 3, 4, 5, 6, 7};//1. heapify 建立大顶堆MaxHeap maxHeap = new MaxHeap(array);System.out.println(Arrays.toString(maxHeap.array));//3. 重复第二步直至堆里剩一个元素while(maxHeap.size>1){//将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆maxHeap.swap(0, maxHeap.size-1);maxHeap.size--;maxHeap.down(0);}System.out.println(Arrays.toString(maxHeap.array));}
}

 

小顶堆

小顶堆中,任意节点 C 与它的父节点 P 符合 P.value <= C.value:父节点的值<=子节点的值

代码实现:

/*** @BelongsProject: arithmetic* @BelongsPackage: com.hzp.algorithm.heap* @Author: ASUS* @CreateTime: 2023-10-02  10:41* @Description: TODO 小顶堆Plus_增加了堆化等方法* @Version: 1.0*/
public class MinHeap {int[] array;int size;public MinHeap(int capacity) {this.array = new int[capacity];}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {//注意:当传入的数组是null时,我们可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int top = array[0];swap(0, size - 1);size--;//从索引位置0开始下潜down(0);return top;}private boolean isEmpty(){if(size==0){return true;}return false;}public boolean isFull(){return size==array.length;}/*** 删除指定索引处元素  这个方法与删除堆顶元素方法思路一样** @param index 索引* @return 被删除元素*/public int poll(int index) {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行if(isEmpty()){throw new IllegalArgumentException("数组有问题");}int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素* @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素* @return 是否添加成功*/public boolean offer(int offered) {if (size == array.length) {return false;}up(offered);size++;return true;}//向堆的尾部添加元素: 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;if (offered < array[parent]) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public MinHeap(int[] array) {this.array = array;this.size = array.length;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点 :套用公式 size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int min = parent;//left < size:必须是有效的索引  不可能超出数组最大长度吧if (left < size && array[left] < array[min]) {min = left;}if (right < size && array[right] < array[min]) {min = right;}if (min != parent) { // 找到了更大的孩子swap(min, parent);down(min);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}public static void main(String[] args) {
//        int[] array = {1, 2, 3, 4, 5, 6, 7};
//        MaxHeap maxHeap = new MaxHeap(array);
//        System.out.println(Arrays.toString(maxHeap.array));//1. heapify 建立小顶堆//2. 将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆//3. 重复第二步直至堆里剩一个元素int[] array = {1, 2, 3, 4, 5, 6, 7};//1. heapify 建立大顶堆MinHeap maxHeap = new MinHeap(array);System.out.println(Arrays.toString(maxHeap.array));//3. 重复第二步直至堆里剩一个元素while(maxHeap.size>1){//将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆maxHeap.swap(0, maxHeap.size-1);maxHeap.size--;maxHeap.down(0);}System.out.println(Arrays.toString(maxHeap.array));}
}

完全二叉树可以使用数组来表示

那完全二叉树显然是个非线性的数据结构,但是它存储的时候可以使用线性的数组结构来存储数据:

特征

  • 如果从索引 0 开始存储节点数据

    • 节点 i 的父节点为 floor((i-1)/2),当 i>0 时

    • 节点 i 的左子节点为 2i+1,右子节点为 2i+2,当然它们得 < size

  • 如果从索引 1 开始存储节点数据

    • 节点 i 的父节点为 floor(i/2),当 i > 1 时

    • 节点 i 的左子节点为 2i,右子节点为 2i+1,同样得 < size

堆的优化​​​​​​​

以大顶堆为例,相对于之前的优先级队列,增加了堆化等方法:

public class MaxHeap {int[] array;int size;public MaxHeap(int capacity) {this.array = new int[capacity];}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {//注意:当传入的数组是null时,我们可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行int top = array[0];swap(0, size - 1);size--;//从索引位置0开始下潜down(0);return top;}/*** 删除指定索引处元素  这个方法与删除堆顶元素方法思路一样** @param index 索引* @return 被删除元素*/public int poll(int index) {//注意:当传入的数组是null,可以设置一个判断来抛个异常,在这里我们就不去判断,请有需要的自行int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素* @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素* @return 是否添加成功*/public boolean offer(int offered) {if (size == array.length) {return false;}up(offered);size++;return true;}//向堆的尾部添加元素: 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;if (offered > array[parent]) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public MaxHeap(int[] array) {this.array = array;this.size = array.length;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点 :套用公式 size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int max = parent;//left < size:必须是有效的索引  不可能超出数组最大长度吧if (left < size && array[left] > array[max]) {max = left;}if (right < size && array[right] > array[max]) {max = right;}if (max != parent) { // 找到了更大的孩子swap(max, parent);down(max);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}public static void main(String[] args) {int[] array = {1, 2, 3, 4, 5, 6, 7};MaxHeap maxHeap = new MaxHeap(array);System.out.println(Arrays.toString(maxHeap.array));}
}

Floyd 建堆算法作者(也是之前龟兔赛跑判环作者):

如果对龟兔赛跑判环不了解的可以查看此文章:

  1. 找到最后一个非叶子节点 (叶子节点:没有孩子的节点

  2. 从后向前,对每个节点执行下潜

一些规律

  • 一棵满二叉树节点个数为 2^h-1,如下例中高度 h=3 节点数是 2^3-1=7

  • 非叶子节点范围为 [0, size/2-1]

算法时间复杂度分析

下面看交换次数的推导:设节点高度为 3

每一层的交换次数为:节点个数*此节点交换次数,总的交换次数为

即 h:总高度 i:本层高度

在 Wolfram|Alpha: Computational Intelligence 输入

Sum[\(40)Divide[Power[2,x],Power[2,i]]*\(40)i-1\(41)\(41),{i,1,x}]

推导出

通用堆

通用heap :可以扩容的 heap, max 用于指定是大顶堆还是小顶堆
/*** @BelongsProject: arithmetic* @BelongsPackage: com.hzp.algorithm.heap* @Author: ASUS* @CreateTime: 2023-10-02  15:56* @Description: TODO 通用heap :可以扩容的 heap, max 用于指定是大顶堆还是小顶堆* @Version: 1.0*/
public class Heap {int[] array;int size;boolean max;public int size() {return size;}//当max为true则为大顶堆  如果是false则为小顶堆public Heap(int capacity, boolean max) {this.array = new int[capacity];this.max = max;}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {int top = array[0];swap(0, size - 1);size--;down(0);return top;}/*** 删除指定索引处元素** @param index 索引* @return 被删除元素*/public int poll(int index) {int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素** @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素*/public void offer(int offered) {if (size == array.length) {grow();}up(offered);size++;}//如果容量不够就进行扩容private void grow() {int capacity = size + (size >> 1);int[] newArray = new int[capacity];//将原有的数组重新放到扩容好的数组中System.arraycopy(array, 0,newArray, 0, size);array = newArray;}// 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;boolean cmp = max ? offered > array[parent] : offered < array[parent];if (cmp) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public Heap(int[] array, boolean max) {this.array = array;this.size = array.length;this.max = max;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点  size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int min = parent;if (left < size && (max ? array[left] > array[min] : array[left] < array[min])) {min = left;}if (right < size && (max ? array[right] > array[min] : array[right] < array[min])) {min = right;}if (min != parent) { // 找到了更大的孩子swap(min, parent);down(min);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}}

 

相关文章:

堆的初步认识

在学习本节文章前要先了解&#xff1a;大顶堆与小顶堆&#xff1a; &#xff08;优先级队列_加瓦不加班的博客-CSDN博客&#xff09; 堆实现 计算机科学中&#xff0c;堆是一种基于树的数据结构&#xff0c;通常用完全二叉树实现。 什么叫完全二叉树&#xff1f; 答&#x…...

CycleGAN模型之Pytorch实战

一、CycleGAN基本介绍 1. CycleGAN论文:《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》 2. 原文代码:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix 3. 网传精简代码:https://github.com/aitorzip/PyTorch-CycleGAN …...

C++(STL容器适配器)

前言&#xff1a; 适配器也称配接器&#xff08;adapters&#xff09;在STL组件的灵活组合运用功能上&#xff0c;扮演着轴承、转换器的角色。 《Design Patterns》对adapter的定义如下&#xff1a;将一个class的接口转换为另一个class的接口&#xff0c;使原本因接口不兼容而…...

软考 系统架构设计师系列知识点之软件架构风格(7)

接前一篇文章&#xff1a;软考 系统架构设计师系列知识点之软件架构风格&#xff08;6&#xff09; 这个十一注定是一个不能放松、保持“紧”的十一。由于报名了全国计算机技术与软件专业技术资格&#xff08;水平&#xff09;考试&#xff0c;11月4号就要考试&#xff0c;因此…...

【Vue3】自定义指令

除了 Vue 内置的一系列指令 (比如 v-model 或 v-show) 之外&#xff0c;Vue 还允许你注册自定义的指令 (Custom Directives)。 1. 生命周期钩子函数 一个自定义指令由一个包含类似组件生命周期钩子的对象来定义。钩子函数会接收到指令所绑定元素作为其参数。 在 <script …...

UG\NX CAM二次开发 加工模块获取 UF _ask_application_module

文章作者:代工 来源网站:NX CAM二次开发专栏 简介: UG\NX CAM二次开发 加工模块获取 UF _ask_application_module 代码: void MyClass::do_it() { // TODO: add your code here // 获取NX当前所在的模块 int module_id = 0; // UF_ask_application_module(&…...

借助GPU算力编译Android

借助GPU算力编译Android 借助GPU编译Android代码的意义在于提高编译的效率和速度。传统的CPU编译方式在处理大量代码时可能会遇到性能瓶颈,而GPU编译利用了显卡的并行计算能力,可以同时处理多个任务,加快编译过程。通过利用GPU的并行计算能力,可以将编译过程中的多个任务分…...

docker-compose一键部署mysql

1.创建安装目录 mnt为硬盘挂载目录&#xff0c;根据实际情况修改 mkdir -p /mnt/mysql cd /mnt/mysql vim docker-compose.yml2.编写docker-compose.yml version: 3.1 services:db:image: mysql:5.7 #mysql版本volumes:- ./data/db:/var/lib/mysql #数据文件- ./etc/my.cnf:/…...

MATLAB 函数签名器

文章目录 MATLAB 函数签名器注释规范模板参数类型 kind数据格式 type选项的支持 使用可执行程序封装为m函数程序输出 编译待办事项推荐阅读附录 MATLAB 函数签名器 MATLAB 函数签名器 (FUNCSIGN) &#xff0c;在规范注释格式的基础上为函数文件或类文件自动生成函数签名&#…...

2019强网杯随便注bugktu sql注入

一.2019强网杯随便注入 过滤了一些函数&#xff0c;联合查询&#xff0c;报错&#xff0c;布尔&#xff0c;时间等都不能用了&#xff0c;尝试堆叠注入 1.通过判断是单引号闭合 ?inject1-- 2.尝试堆叠查询数据库 ?inject1;show databases;-- 3.查询数据表 ?inject1;show …...

Html+Css+Js计算时间差,返回相差的天/时/分/秒(从未来的一个日期时间到当前日期时间的差)。

Html部分 <!DOCTYPE html> <html><head><meta charset"utf-8" /><title></title><link rel"stylesheet" type"text/css" href"css/index.css" /><script src"js/index.js" t…...

mybatis项目启动报错:reader entry: ���� = v

问题再现 解决方案一 由于指定的VFS没有找&#xff0c;mybatis启用了默认的DefaultVFS&#xff0c;然后由于DefaultVFS的内部逻辑&#xff0c;从而导致了reader entry乱码。 去掉mybatis配置文件中关于别名的配置&#xff0c;然后在mapper.xml文件中使用完整的类名。 待删除的…...

【GIT版本控制】--什么是版本控制

一、为什么需要版本控制&#xff1f; 版本控制是在软件开发和许多其他领域中非常重要的工具&#xff0c;因为它解决了许多与协作、追踪更改和管理项目相关的问题。以下是一些主要原因&#xff0c;解释了为什么需要版本控制&#xff1a; 追踪更改历史: 版本控制系统允许您准确…...

ChatGPT付费创作系统V2.3.4独立版 +WEB端+ H5端 + 小程序最新前端

人类小徐提供的GPT付费体验系统最新版系统是一款基于ThinkPHP框架开发的AI问答小程序&#xff0c;是基于国外很火的ChatGPT进行开发的Ai智能问答小程序。当前全民热议ChatGPT&#xff0c;流量超级大&#xff0c;引流不要太简单&#xff01;一键下单即可拥有自己的GPT&#xff0…...

GEE16: 区域日均降水量计算

Precipitation 1. 区域日均降水量计算2. 降水时间序列3. 降水数据年度时间序列对比分析 1. 区域日均降水量计算 今天分析一个计算区域日均降水量的方法&#xff1a; 数据信息&#xff1a;   Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a…...

打开MySQL数据库

在命令行里输入mysql --version就可以查看&#xff1a; mysql -uroot -p之前设置的密码&#xff08;不用输入&#xff09;就可登录成功&#xff1a;...

玩转ChatGPT:DALL·E 3生成图像

一、写在前面 好久不更新咯&#xff0c;因为没有什么有意思的东西分享的。 今天更新&#xff0c;是因为GPT整合了自家的图像生成工具&#xff0c;名字叫作DALLE 3。 DALLE 3是OpenAI推出的一种生成图像的模型&#xff0c;它基于GPT-3架构进行训练&#xff0c;但是它的主要目…...

小程序入门笔记(一) 黑马程序员前端微信小程序开发教程

微信小程序基本介绍 小程序和普通网页有以下几点区别&#xff1a; 运行环境&#xff1a;小程序可以在手机的操作系统上直接运行&#xff0c;如微信、支付宝等&#xff1b;而普通网页需要在浏览器中打开才能运行。 开发技术&#xff1a;小程序采用前端技术进行开发&#xff0c;…...

【进程管理】初识进程

一.何为进程 教材一般会给出这样的答案: 运行起来的程序 或者 内存中的程序 这样说太抽象了&#xff0c;那我问程序和进程有什么区别呢&#xff1f;诶&#xff1f;这我知道&#xff0c;书上说&#xff0c;动态的叫进程&#xff0c;静态的叫程序。那么静态和动态又是什么意思…...

ArcGIS Maps SDK for JS:监听按钮点击事件控制图层的visible属性

文章目录 1 需求描述2 解决方案 1 需求描述 现在有这么一个需求&#xff1a;在地图中添加一些图层&#xff0c;添加图层列表按钮。打开图层列表后用户会打开某些图层使其可见&#xff0c;要求关闭图层列表时&#xff0c;隐藏某些图层&#xff08;若visibletrue&#xff09; 2…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

论文阅读:Matting by Generation

今天介绍一篇关于 matting 抠图的文章&#xff0c;抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法&#xff0c;已经有很多的工作和这个任务相关。这两年 diffusion 模型很火&#xff0c;大家又开始用 diffusion 模型做各种 CV 任务了&am…...