当前位置: 首页 > news >正文

李沐深度学习记录5:13.Dropout

Dropout从零开始实现

import torch
from torch import nn
from d2l import torch as d2l# 定义Dropout函数
def dropout_layer(X, dropout):assert 0 <= dropout <= 1# 在本情况中,所有元素都被丢弃if dropout == 1:return torch.zeros_like(X)# 在本情况中,所有元素都被保留if dropout == 0:return X#torch.rand生成0-1之间的均匀分布随机数,将其值与dropout概率作比较,得到布尔类型结果由mask存储#布尔类型为0的则为随机丢弃置0的隐藏层单元,留下的则进行值的替换h-->h/(1-p)mask = (torch.rand(X.shape) > dropout).float()return mask * X / (1.0 - dropout)# 测试dropout函数
# X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
# print(X)
# print(dropout_layer(X, 0.))
# print(dropout_layer(X, 0.5))
# print(dropout_layer(X, 1.))#定义模型参数
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256#定义模型
dropout1, dropout2 = 0.2, 0.5class Net(nn.Module):  #写一个模型类继承nn.Moduledef __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,is_training = True):super(Net, self).__init__()self.num_inputs = num_inputsself.training = is_training#定义三个全连接层和激活函数self.lin1 = nn.Linear(num_inputs, num_hiddens1)self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)self.lin3 = nn.Linear(num_hiddens2, num_outputs)self.relu = nn.ReLU()def forward(self, X):H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs)))) #第一层全连接层加激活函数# 只有在训练模型时才使用dropoutif self.training == True:# 在第一个全连接层之后添加一个dropout层H1 = dropout_layer(H1, dropout1)H2 = self.relu(self.lin2(H1))if self.training == True:# 在第二个全连接层之后添加一个dropout层H2 = dropout_layer(H2, dropout2)out = self.lin3(H2)return outnet = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)#训练和测试
num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

在这里插入图片描述

Dropout简洁实现

import torch
from torch import nn
from d2l import torch as d2l#定义模型参数
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256#定义模型
dropout1, dropout2 = 0.2, 0.5#定义模型
net=nn.Sequential(nn.Flatten(),nn.Linear(784,256),nn.ReLU(),#第一个全连接层之后添加一个Dropout层nn.Dropout(dropout1),nn.Linear(256,256),nn.ReLU(),#第二个全连接层之后添加一个Dropout层nn.Dropout(dropout2),nn.Linear(256,10))
#参数初始化
def init_weights(m):if type(m)==nn.Linear:nn.init.normal_(m.weight,std=0.01)net.apply(init_weights)

在这里插入图片描述

#读取数据
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)#训练测试
num_epochs,lr=10,0.5
loss = nn.CrossEntropyLoss(reduction='none')
trainer=torch.optim.SGD(net.parameters(),lr=lr)
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,trainer)

在这里插入图片描述

相关文章:

李沐深度学习记录5:13.Dropout

Dropout从零开始实现 import torch from torch import nn from d2l import torch as d2l# 定义Dropout函数 def dropout_layer(X, dropout):assert 0 < dropout < 1# 在本情况中&#xff0c;所有元素都被丢弃if dropout 1:return torch.zeros_like(X)# 在本情况中&…...

计算机竞赛 题目:基于大数据的用户画像分析系统 数据分析 开题

文章目录 1 前言2 用户画像分析概述2.1 用户画像构建的相关技术2.2 标签体系2.3 标签优先级 3 实站 - 百货商场用户画像描述与价值分析3.1 数据格式3.2 数据预处理3.3 会员年龄构成3.4 订单占比 消费画像3.5 季度偏好画像3.6 会员用户画像与特征3.6.1 构建会员用户业务特征标签…...

MFC ExtTextOut函数学习

ExtTextOut - 扩展的文本输出&#xff1b; win32 api的声明如下&#xff1b; ExtTextOut( DC: HDC; {设备环境句柄} X, Y: Integer; {起点坐标} Options: Longint; {选项} Rect: PRect; {指定显示范围; 0 表示限制范围} Str: PChar; {字符串…...

Java中阻塞队列原理、特点、适用场景

文章目录 阻塞队列对比、总览阻塞队列本质思想主要队列讲解ArrayBlockingQueueLinkedBlockingQueueSynchronousQueueLinkedTransferQueuePriorityBlockingQueueDelayQueueLinkedBlockingDeque 阻塞队列对比、总览 阻塞队列本质思想 阻塞队列都是线程安全的队列. 其最主要的功能…...

PHP之linux、apache和nginx与安全优化面试题

1.linux常用命令 查看目录pwd 创建文件touch 创建目录mkdir 删除文件rm 删除目录rmdir移动改名文件 mc 查询目录find 修改权限chmod 压缩包 tar 安装 yum install 修改文件vi查看进程ps 停止进程kill 定时任务crontab 2、nginx的优化 gzip压缩优化 expires缓存…...

算法笔记:0-1背包问题

n个商品组成集合O&#xff0c;每个商品有两个属性vi&#xff08;体积&#xff09;和pi&#xff08;价格&#xff09;&#xff0c;背包容量为C。 求解一个商品子集S&#xff0c;令 优化目标 1. 枚举所有商品组合 共2^n - 1种情况 2. 递归求解 KnapsackSR(h, i, c)&#xff…...

C++入门-day02

引言&#xff1a;在上一节中我们接触了C中的命名空间&#xff0c;学会了C中的标准输出流。这一节&#xff0c;我标题一们讲讲缺省、重载。 一、缺省参数 在C中&#xff0c;给函数的形参默认给一个值就是缺省参数&#xff0c;你可能会比较懵逼&#xff0c;下面看一段代码。 正常…...

模板方法模式,基于继承实现的简单的设计模式(设计模式与开发实践 P11)

文章目录 实现举例应用钩子 Hook 模板方法模式是一种基于继承的设计模式&#xff0c;由两部分构成&#xff1a; 抽象父类&#xff08;一般封装了子类的算法框架&#xff09;具体的实现子类 实现 简单地通过继承就可以实现 举例 足球赛 和 篮球赛 都有 3 个步骤&#xff0c…...

php实战案例记录(16)php://input输入流

php://input是PHP中的一个特殊的输入流&#xff0c;它允许访问请求的原始数据。它主要用于处理非表单的POST请求&#xff0c;例如当请求的内容类型为application/json或application/xml时。使用php://input可以获取到POST请求中的原始数据&#xff0c;无论数据是什么格式。使用…...

cad图纸如何防止盗图(一个的制造设计型企业如何保护设计图纸文件)

在现代企业中&#xff0c;设计图纸是公司的重要知识产权&#xff0c;关系到公司的核心竞争力。然而&#xff0c;随着技术的发展&#xff0c;员工获取和传播设计图纸的途径越来越多样化&#xff0c;如何有效地防止员工复制设计图纸成为了企业管理的一大挑战。本文将从技术、管理…...

Windows11 安全中心页面不可用问题(无法打开病毒和威胁防护)解决方案汇总(图文介绍版)

本文目录 Windows版本与报错信息问题详细图片&#xff1a; 解决方案:方案一、管理员权限&#xff08;若你确定你的电脑只有你一个账户&#xff0c;则此教程无效&#xff0c;若你也不清楚&#xff0c;请阅读后再做打算&#xff09;方案二、修改注册表(常用方案)方案三、进入开发…...

1329: 【C2】【排序】奖学金

题目描述 某小学最近得到了一笔赞助&#xff0c;打算拿出其中一部分为学习成绩优秀的前5名学生发奖学金。期末&#xff0c;每个学生都有3门课的成绩:语文、数学、英语。先按总分从高到低排序&#xff0c;如果两个同学总分相同&#xff0c;再按语文成绩从高到低排序&#xff0c…...

解决dockerfile创建镜像时pip install报错的bug

项目场景&#xff1a; 使用docker-compose创建django容器 问题描述 > [5/5] RUN /bin/bash -c source ~/.bashrc && python3 -m pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple: 0.954 Looking in indexes: https://…...

算法题:分发饼干

这个题目是贪心算法的基础练习题&#xff0c;解决思路是排序双指针谈心法&#xff0c;先将两个数组分别排序&#xff0c;优先满足最小胃口的孩子。&#xff08;本题完整题目附在了最后面&#xff09; 代码如下&#xff1a; class Solution(object):def findContentChildren(se…...

WebSocket编程golang

WebSocket编程 WebSocket协议解读 websocket和http协议的关联&#xff1a; 都是应用层协议&#xff0c;都基于tcp传输协议。跟http有良好的兼容性&#xff0c;ws和http的默认端口都是80&#xff0c;wss和https的默认端口都是443。websocket在握手阶段采用http发送数据。 we…...

PHP之redis 和 memache面试题

目录 1、什么是Redis&#xff1f;它的主要特点是什么&#xff1f; 2、redis数据类型 3、Redis的持久化机制有哪些&#xff1f;它们之间有什么区别&#xff1f; 4、Redis的主从复制是什么&#xff1f;如何配置Redis的主从复制&#xff1f; 5、Redis的集群模式是什么&#xf…...

java socket实现代理Android App

实现逻辑就是转发请求和响应。 核心代码 // 启动代理服务器private void startProxyServer() {new Thread(new ProxyServer()).start();}// 代理服务器static class ProxyServer implements Runnable {Overridepublic void run() {try {// 监听指定的端口int port 8098; //一…...

Nacos与Eureka的区别

大家好我是苏麟今天说一说Nacos与Eureka的区别. Nacos Nacos的服务实例分为两种l类型&#xff1a; 临时实例&#xff1a;如果实例宕机超过一定时间&#xff0c;会从服务列表剔除&#xff0c;默认的类型。非临时实例&#xff1a;如果实例宕机&#xff0c;不会从服务列表剔除&…...

浅谈Rob Pike的五条编程规范

又是一篇需要我们多些思考的文章~ 简介下Rob Pike Rob Pike是Unix的先驱&#xff0c;UTF-8的设计人&#xff0c;Go语言核心设计者之一。 Rob Pike的5条编程规则 原文地址&#xff1a;http://users.ece.utexas.edu/~adnan/pike.html 中文翻译&#xff1a; 罗布派克&#x…...

LeetCode 377.组合总和IV 可解决一步爬m个台阶到n阶楼顶问题( 完全背包 + 排列数)

给你一个由 不同 整数组成的数组 nums &#xff0c;和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。 题目数据保证答案符合 32 位整数范围 示例 1&#xff1a; 输入&#xff1a;nums [1,2,3], target 4 输出&#xff1a;7 解释&#x…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...