李沐深度学习记录5:13.Dropout
Dropout从零开始实现
import torch
from torch import nn
from d2l import torch as d2l# 定义Dropout函数
def dropout_layer(X, dropout):assert 0 <= dropout <= 1# 在本情况中,所有元素都被丢弃if dropout == 1:return torch.zeros_like(X)# 在本情况中,所有元素都被保留if dropout == 0:return X#torch.rand生成0-1之间的均匀分布随机数,将其值与dropout概率作比较,得到布尔类型结果由mask存储#布尔类型为0的则为随机丢弃置0的隐藏层单元,留下的则进行值的替换h-->h/(1-p)mask = (torch.rand(X.shape) > dropout).float()return mask * X / (1.0 - dropout)# 测试dropout函数
# X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
# print(X)
# print(dropout_layer(X, 0.))
# print(dropout_layer(X, 0.5))
# print(dropout_layer(X, 1.))#定义模型参数
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256#定义模型
dropout1, dropout2 = 0.2, 0.5class Net(nn.Module): #写一个模型类继承nn.Moduledef __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,is_training = True):super(Net, self).__init__()self.num_inputs = num_inputsself.training = is_training#定义三个全连接层和激活函数self.lin1 = nn.Linear(num_inputs, num_hiddens1)self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)self.lin3 = nn.Linear(num_hiddens2, num_outputs)self.relu = nn.ReLU()def forward(self, X):H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs)))) #第一层全连接层加激活函数# 只有在训练模型时才使用dropoutif self.training == True:# 在第一个全连接层之后添加一个dropout层H1 = dropout_layer(H1, dropout1)H2 = self.relu(self.lin2(H1))if self.training == True:# 在第二个全连接层之后添加一个dropout层H2 = dropout_layer(H2, dropout2)out = self.lin3(H2)return outnet = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)#训练和测试
num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
Dropout简洁实现
import torch
from torch import nn
from d2l import torch as d2l#定义模型参数
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256#定义模型
dropout1, dropout2 = 0.2, 0.5#定义模型
net=nn.Sequential(nn.Flatten(),nn.Linear(784,256),nn.ReLU(),#第一个全连接层之后添加一个Dropout层nn.Dropout(dropout1),nn.Linear(256,256),nn.ReLU(),#第二个全连接层之后添加一个Dropout层nn.Dropout(dropout2),nn.Linear(256,10))
#参数初始化
def init_weights(m):if type(m)==nn.Linear:nn.init.normal_(m.weight,std=0.01)net.apply(init_weights)
#读取数据
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)#训练测试
num_epochs,lr=10,0.5
loss = nn.CrossEntropyLoss(reduction='none')
trainer=torch.optim.SGD(net.parameters(),lr=lr)
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,trainer)
相关文章:

李沐深度学习记录5:13.Dropout
Dropout从零开始实现 import torch from torch import nn from d2l import torch as d2l# 定义Dropout函数 def dropout_layer(X, dropout):assert 0 < dropout < 1# 在本情况中,所有元素都被丢弃if dropout 1:return torch.zeros_like(X)# 在本情况中&…...

计算机竞赛 题目:基于大数据的用户画像分析系统 数据分析 开题
文章目录 1 前言2 用户画像分析概述2.1 用户画像构建的相关技术2.2 标签体系2.3 标签优先级 3 实站 - 百货商场用户画像描述与价值分析3.1 数据格式3.2 数据预处理3.3 会员年龄构成3.4 订单占比 消费画像3.5 季度偏好画像3.6 会员用户画像与特征3.6.1 构建会员用户业务特征标签…...

MFC ExtTextOut函数学习
ExtTextOut - 扩展的文本输出; win32 api的声明如下; ExtTextOut( DC: HDC; {设备环境句柄} X, Y: Integer; {起点坐标} Options: Longint; {选项} Rect: PRect; {指定显示范围; 0 表示限制范围} Str: PChar; {字符串…...

Java中阻塞队列原理、特点、适用场景
文章目录 阻塞队列对比、总览阻塞队列本质思想主要队列讲解ArrayBlockingQueueLinkedBlockingQueueSynchronousQueueLinkedTransferQueuePriorityBlockingQueueDelayQueueLinkedBlockingDeque 阻塞队列对比、总览 阻塞队列本质思想 阻塞队列都是线程安全的队列. 其最主要的功能…...
PHP之linux、apache和nginx与安全优化面试题
1.linux常用命令 查看目录pwd 创建文件touch 创建目录mkdir 删除文件rm 删除目录rmdir移动改名文件 mc 查询目录find 修改权限chmod 压缩包 tar 安装 yum install 修改文件vi查看进程ps 停止进程kill 定时任务crontab 2、nginx的优化 gzip压缩优化 expires缓存…...

算法笔记:0-1背包问题
n个商品组成集合O,每个商品有两个属性vi(体积)和pi(价格),背包容量为C。 求解一个商品子集S,令 优化目标 1. 枚举所有商品组合 共2^n - 1种情况 2. 递归求解 KnapsackSR(h, i, c)ÿ…...

C++入门-day02
引言:在上一节中我们接触了C中的命名空间,学会了C中的标准输出流。这一节,我标题一们讲讲缺省、重载。 一、缺省参数 在C中,给函数的形参默认给一个值就是缺省参数,你可能会比较懵逼,下面看一段代码。 正常…...
模板方法模式,基于继承实现的简单的设计模式(设计模式与开发实践 P11)
文章目录 实现举例应用钩子 Hook 模板方法模式是一种基于继承的设计模式,由两部分构成: 抽象父类(一般封装了子类的算法框架)具体的实现子类 实现 简单地通过继承就可以实现 举例 足球赛 和 篮球赛 都有 3 个步骤,…...
php实战案例记录(16)php://input输入流
php://input是PHP中的一个特殊的输入流,它允许访问请求的原始数据。它主要用于处理非表单的POST请求,例如当请求的内容类型为application/json或application/xml时。使用php://input可以获取到POST请求中的原始数据,无论数据是什么格式。使用…...

cad图纸如何防止盗图(一个的制造设计型企业如何保护设计图纸文件)
在现代企业中,设计图纸是公司的重要知识产权,关系到公司的核心竞争力。然而,随着技术的发展,员工获取和传播设计图纸的途径越来越多样化,如何有效地防止员工复制设计图纸成为了企业管理的一大挑战。本文将从技术、管理…...

Windows11 安全中心页面不可用问题(无法打开病毒和威胁防护)解决方案汇总(图文介绍版)
本文目录 Windows版本与报错信息问题详细图片: 解决方案:方案一、管理员权限(若你确定你的电脑只有你一个账户,则此教程无效,若你也不清楚,请阅读后再做打算)方案二、修改注册表(常用方案)方案三、进入开发…...
1329: 【C2】【排序】奖学金
题目描述 某小学最近得到了一笔赞助,打算拿出其中一部分为学习成绩优秀的前5名学生发奖学金。期末,每个学生都有3门课的成绩:语文、数学、英语。先按总分从高到低排序,如果两个同学总分相同,再按语文成绩从高到低排序,…...

解决dockerfile创建镜像时pip install报错的bug
项目场景: 使用docker-compose创建django容器 问题描述 > [5/5] RUN /bin/bash -c source ~/.bashrc && python3 -m pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple: 0.954 Looking in indexes: https://…...

算法题:分发饼干
这个题目是贪心算法的基础练习题,解决思路是排序双指针谈心法,先将两个数组分别排序,优先满足最小胃口的孩子。(本题完整题目附在了最后面) 代码如下: class Solution(object):def findContentChildren(se…...
WebSocket编程golang
WebSocket编程 WebSocket协议解读 websocket和http协议的关联: 都是应用层协议,都基于tcp传输协议。跟http有良好的兼容性,ws和http的默认端口都是80,wss和https的默认端口都是443。websocket在握手阶段采用http发送数据。 we…...
PHP之redis 和 memache面试题
目录 1、什么是Redis?它的主要特点是什么? 2、redis数据类型 3、Redis的持久化机制有哪些?它们之间有什么区别? 4、Redis的主从复制是什么?如何配置Redis的主从复制? 5、Redis的集群模式是什么…...

java socket实现代理Android App
实现逻辑就是转发请求和响应。 核心代码 // 启动代理服务器private void startProxyServer() {new Thread(new ProxyServer()).start();}// 代理服务器static class ProxyServer implements Runnable {Overridepublic void run() {try {// 监听指定的端口int port 8098; //一…...

Nacos与Eureka的区别
大家好我是苏麟今天说一说Nacos与Eureka的区别. Nacos Nacos的服务实例分为两种l类型: 临时实例:如果实例宕机超过一定时间,会从服务列表剔除,默认的类型。非临时实例:如果实例宕机,不会从服务列表剔除&…...
浅谈Rob Pike的五条编程规范
又是一篇需要我们多些思考的文章~ 简介下Rob Pike Rob Pike是Unix的先驱,UTF-8的设计人,Go语言核心设计者之一。 Rob Pike的5条编程规则 原文地址:http://users.ece.utexas.edu/~adnan/pike.html 中文翻译: 罗布派克&#x…...

LeetCode 377.组合总和IV 可解决一步爬m个台阶到n阶楼顶问题( 完全背包 + 排列数)
给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。 题目数据保证答案符合 32 位整数范围 示例 1: 输入:nums [1,2,3], target 4 输出:7 解释&#x…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...

技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
区块链技术概述
区块链技术是一种去中心化、分布式账本技术,通过密码学、共识机制和智能合约等核心组件,实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点:数据存储在网络中的多个节点(计算机),而非…...