javascript二维数组(10)ajax的使用
在JQuery中,使用AJAX的方法主要有以下几种:
- $.ajax():这是JQuery中最通用的AJAX请求方法。它需要一个包含各种参数的对象,其中包括请求的URL、请求方式、数据类型、请求参数等。请求成功后执行的回调函数也是通过参数来定义的。
例如:
$.ajax({url: 'myfile.txt',type: 'GET',dataType: 'text',success: function(data, state) {$('#myDiv').text(data);}
});
在jQuery中,$.ajax()函数有以下参数:
-
url:这是请求的URL。它是必须的参数,可以是相对URL或绝对URL。 -
type:这是请求的方式。它默认为GET,但也可以是POST、GET、PUT、DELETE等HTTP方法。 -
timeout:这是请求的超时时间(以毫秒为单位)。如果此参数被设置,那么请求会在超时后停止,即使没有接收到响应。 -
async:这个布尔参数表示请求是否异步。默认情况下,它是true,表示请求是异步的。如果设置为false,那么请求将会是同步的。 -
cache:这个布尔参数表示是否从浏览器缓存中加载请求信息。默认为true,如果设置为false,则不会从缓存中加载。 -
data:这是发送到服务器的数据。它可以是对象或字符串类型。 -
dataType:这个参数表示预期的服务器响应的数据类型。可用的类型包括xml、json、script、html等。 -
success:这是一个回调函数,当请求成功时会被调用。它接受服务器响应的数据作为参数。 -
error:这是一个回调函数,当请求失败时会被调用。它接受一个包含错误信息的对象作为参数。 -
. g e t ( ) 和 .get()和 .get()和.post():这两个方法是在 . a j a x ( ) 的基础上,针对 G E T 和 P O S T 请求的简化版本。它们的参数和 .ajax()的基础上,针对GET和POST请求的简化版本。它们的参数和 .ajax()的基础上,针对GET和POST请求的简化版本。它们的参数和.ajax()类似,但是更简洁。
例如:
$.get('myfile.txt', function(data, state) {$('#myDiv').text(data);
});
- $.load():这个方法是用来发送一个GET请求,然后将服务器返回的内容插入到指定的元素中。这个方法比较简单,但是需要指定一个已经存在的HTML元素。
例如:
$('#myDiv').load('myfile.txt');
ajax传递参数和回调
$(function () {$.ajax({type: 'post',url: "http://test.com/record.json?paged=1&pageSize=100",data: JSON.stringify({group_id: 1935,//sdata: sdata,//sub_region: sub_region,sensor_location: '1F',//sensorStatusVal: sensorStatusVal,propertyTypeVal: "空调",}),headers: {"USER-KEY": "426aad8a150a4d85a8fa7221085edca3"},contentType: "application/json; charset=utf-8",dataType: "json",success: function (res) {console.log(res);},error: function (err) {console.log(err)}});})
@漏刻有时
相关文章:
javascript二维数组(10)ajax的使用
在JQuery中,使用AJAX的方法主要有以下几种: $.ajax():这是JQuery中最通用的AJAX请求方法。它需要一个包含各种参数的对象,其中包括请求的URL、请求方式、数据类型、请求参数等。请求成功后执行的回调函数也是通过参数来定义的。 …...
CMMI5认证哪些企业可以申请
CMMI5认证哪些企业可以申请 什么是CMMI5认证 CMMI(Capability Maturity Model Integration)是一种用于评估组织的软件工程能力的国际标准。CMMI模型包括5个等级,其中CMMI5是最高等级,代表组织具有达到持续优化和创新的能力。获得…...
【iptables 实战】9 docker网络原理分析
在开始本章阅读之前,需要提前了解以下的知识 阅读本节需要一些docker的基础知识,最好是在linux上安装好docker环境。提前掌握iptables的基础知识,前文参考【iptables 实战】 一、docker网络模型 docker网络模型如下图所示 说明࿱…...
【多级缓存】
文章目录 1. JVM进程缓存2. Lua语法3. 实现多级缓存3.1 反向代理流程3.2 OpenResty快速入门 4. 查询Tomcat4.1 发送http请求的API4.2 封装http工具4.3 基于ID负载均衡4.4 流程小结 5. Redis缓存查询5.1 实现Redis查询 6. Nginx本地缓存6.1 本地缓存API6.2 实现本地缓存查询 7. …...
第五课 树与图
文章目录 第五课 树与图lc94.二叉树的中序遍历--简单题目描述代码展示 lc589.N叉树的层序遍历--中等题目描述代码展示 lc297.二叉树的序列化和反序列化--困难题目描述代码展示 lc105.从前序与中序遍历序列构造二叉树--中等题目描述代码展示 lc106.从中序与后序遍历序列构造二叉…...
2023-10-07 事业-代号z-副业-CQ私服-调研与分析
摘要: CQ作为一款运营了20年的游戏, 流传出的私服可以说是层出不穷, 到了现在我其实对这款游戏的长线运营的前景很悲观. 但是作为商业的一部分, 对其做谨慎的分析还是很有必要的. 传奇调研的来源: 一. 各种售卖私服的网站 传奇服务端版本库-传奇手游源码「免费下载」传奇GM论…...
合并不同门店数据-上下合并
项目背景:线下超市分店,统计产品的销售数量和销售额,并用透视表计算求和 merge()函数可以根据链接键横向连接两张不同表,concat()函数可以上下合并和左右合并2种不同的合并方式。merge()函数只能横向连接两张表,而con…...
学习记忆——数学篇——案例——算术——整除特点
理解记忆法 对于数的整除特征大家都比较熟悉:比如4看后两位(因为100是4的倍数),8看后三位(因为1000是8的倍数),5末尾是0或5,3与9看各位数字和等等,今天重点研究一下3,9,…...
PHP8中的魔术方法-PHP8知识详解
在PHP 8中,魔术方法是一种特殊的方法,它们以两个下划线(__)开头。魔术方法允许您定义类的行为,例如创建对象、调用其他方法或访问和修改类的属性。以下是一些常见的魔术方法: __construct(): 类的构造函数…...
[图论]哈尔滨工业大学(哈工大 HIT)学习笔记23-31
视频来源:4.1.1 背景_哔哩哔哩_bilibili 目录 1. 哈密顿图 1.1. 背景 1.2. 哈氏图 2. 邻接矩阵/邻接表 3. 关联矩阵 3.1. 定义 4. 带权图 1. 哈密顿图 1.1. 背景 (1)以地球为建模,从一个大城市开始遍历其他大城市并且返回…...
Nginx+Keepalived实现服务高可用
Nginx 和 Keepalived 是常用于构建高可用性(High Availability)架构的工具。Nginx 是一款高性能的Web服务器和反向代理服务器,而Keepalived则提供了对Nginx服务的健康状态监测和故障切换功能。 下载Nginx 在服务器1和服务器2分别下载nginx …...
picodet onnx转其它芯片支持格式时遇到
文章目录 报错信息解决方法两模型精度对比 报错信息 报错信息为: Upsample(resize) Resize_0 not support attribute coordinate_transformation_mode:half_pixel. 解决方法 整个模型转换过程是:paddle 动态模型转成静态,再用paddle2onnx…...
【学习笔记】CF704B Ant Man
智商不够啊,咋想到贪心的😅 非常经典的贪心模型🤔 首先,从小到大将每个 i i i插入到排列中,用 D P DP DP记录还有多少个位置可以插入,可以通过钦定新插入的位置左右两边是否继续插入数来提前计算贡献。注…...
SQLines数据迁移工具
Data and Analytics Platform Migration - SQLines Tools SQLines提供的工具可以帮助您在不同的数据库平台之间传输数据、转换数据库模式(DDL)、视图、存储过程、包、用户定义函数(udf)、触发器、SQL查询和SQL脚本。 SQLines SQL Converter OverviewCommand LineConfigurati…...
pkl文件与打开(使用numpy和pickle)
文章目录 1. 什么是pkl文件2. 如何打开?Reference 1. 什么是pkl文件 1)python中有一种存储方式,可以存储为.pkl文件。 2)该存储方式,可以将python项目过程中用到的一些暂时变量、或者需要提取、暂存的字符串、列表、…...
3d渲染农场全面升级,好用的渲染平台值得了解
什么是渲染农场? 渲染农场是专门从事 3D 渲染的大型机器集合,称为渲染节点,这些机器组合在一起执行一项任务(渲染 3D 帧和动画)。通过将渲染工作分配给数百台机器,可以显着减少渲染时间,从而使…...
1.5 JAVA程序运行的机制
**1.5 Java程序的运行机制** --- **简介:** Java程序的运行涉及两个主要步骤:编译和运行。这种机制确保了Java的跨平台特性。 **主要内容:** 1. **Java程序的执行过程**: - **编译**:首先,扩展名为.jav…...
基于FPGA的拔河游戏设计
基于FPGA的拔河游戏机 设计内容: (1)拔河游戏机需要11个发光二极管排成一行,开机 后只有中间一个亮点,作为拔河的中间线。 游戏双方 各持一个按键,迅速且不断地按动产生脉冲,哪方按 得快,亮点就向哪方移动, 每按一次,亮点移动一次。 移到任一方二极管的终端,该方就…...
关联规则挖掘(下):数据分析 | 数据挖掘 | 十大算法之一
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据…...
8、【Qlib】【主要组件】预测模型:模型训练和预测
8、【主要组件】预测模型:模型训练和预测 简介基本类Example简介 预测模型(Forecast Model)旨在对股票做出预测评分。用户可以通过 qrun 在自动化工作流中使用预测模型。 由于 Qlib 中的组件设计成了松耦合方式,预测模型也可以作为一个独立模块使用。 基本类 Qlib 提供了…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
