如何实现矩阵的重采样问题
文章目录
- 前言
- 一、问题描述
- 二、回答
前言
记录知乎的自问自答。
一、问题描述
我的问题是这样的,有两个列向量E和F,需要注意的是,E和F是连续的,可任意插值,得到包含其中的子向量。E和F通过一个m×n的矩阵联系起来,如下: M m × n × E n × 1 = F m × 1 M_{m\times n}\times E_{n\times 1}=F_{m\times 1} Mm×n×En×1=Fm×1现在,我通过线性插值的方式,得到了E和F的子向量,它们长度分别为v和u,那么请问,我该如何求得矩阵M’,使得: M u × v ′ × E v × 1 = F u × 1 M'_{u\times v}\times E_{v\times 1}=F_{u\times 1} Mu×v′×Ev×1=Fu×1
二、回答
可能是我表述不明白?或者这个问题比较简单?思考了两天,找到了在一定假设下能够实现我需求的方法,这里记录一下。
对于这种要采样的矩阵来说,最麻烦的是,每行的采样方式,因为这是一个相乘再求和的过程,在这个基础上,对结果进行插值,再求矩阵,不可避免地会产生问题。好在我这里的实际问题能够在有效的假设下,规避这个问题。
既然说,E和F都是连续的,不妨设存在函数E(x)和F(x)来描述这两个向量。我们从简单的地方出发,看看会遇到什么问题,先在行方向上采用,再处理列方向的采样。
首先,我们来计算F的第一行, F 1 = M 1 , 1 × E 1 + M 1 , 2 × E 2 + . . . + M 1 , n × E n = ∑ j = 1 n M 1 , j × E j F_1=M_{1,1}\times E_1+M_{1,2}\times E_2+...+M_{1,n}\times E_n=\sum_{j=1}^{n}{M_{1,j}}\times E_j F1=M1,1×E1+M1,2×E2+...+M1,n×En=∑j=1nM1,j×Ej。既然E和F都是连续的,那么不难推断,M应当也是连续的,可任意插值,不妨在第一行上,我们用m(x)表示。那么刚才的式子就可以写成 F 1 = ∫ 1 n m ( x ) E ( x ) d x F_1=\int_{1}^{n}m\left( x \right)E\left( x \right)dx F1=∫1nm(x)E(x)dx。
现在,我们期望的是,从E(x)中任意抽出的序列 E v × 1 E_{v\times 1} Ev×1,都能找到对应的m(x)的序列 M 1 × v ′ M'_{1\times v} M1×v′,继续满足 F 1 = ∑ j = 1 v M 1 , j ′ × E j F_1=\sum_{j=1}^{v}{M'_{1,j}}\times E_j F1=∑j=1vM1,j′×Ej。你可能想用拟合的方法求得m(x),但不幸的是,m(x)并没有你想的平缓,拟合容易出问题,而且我的问题对数值比较敏感,M矩阵的量级在 1 0 − 5 10^{-5} 10−5,贸然拟合恐怕会有比较大的偏差。相对于拟合,我更喜欢插值。
我们把视野再缩小一点,看看 E v × 1 E_{v\times 1} Ev×1中的某个 E i E_i Ei,如何通过插值获得其对应的 M 1 , i ′ M'_{1,i} M1,i′呢?不失一般性地,我们找到 M 1 , i ′ M'_{1,i} M1,i′在原始矩阵中临近的两个值m(a),m(b)和它们对应的E(a),E(b)。我们希望的是, ∫ a b m ( x ) E ( x ) d x = m ′ ( i ) × E ( i ) \int_{a}^{b}m\left( x \right)E\left( x \right)dx=m'\left( i \right)\times E\left( i \right) ∫abm(x)E(x)dx=m′(i)×E(i),这时,我们重要的假设就要登场了。
好在,在一个a-b的区间内,可以合理假设E是不变的,或者,该积分的值主要受m(x)影响,那么上面的式子就变成了 ∫ a b m ( x ) d x = m ′ ( i ) \int_{a}^{b}m\left( x \right)dx=m'\left( i \right) ∫abm(x)dx=m′(i)。至此,通过合理的假设,完成了M’在行方向上的采样。
那么继续,在列方向上的采样就简单得多了,直接线性插值即可,因为矩阵的每一行之间没有计算。
解决这个问题稍显兴奋,写得有些啰里吧嗦,感谢您能浪费时间在这个问题上。
相关文章:
如何实现矩阵的重采样问题
文章目录 前言一、问题描述二、回答 前言 记录知乎的自问自答。 一、问题描述 我的问题是这样的,有两个列向量E和F,需要注意的是,E和F是连续的,可任意插值,得到包含其中的子向量。E和F通过一个mn的矩阵联系起来&…...
Spring-事务管理-加强
目录 开启事务 编程式事务 声明式事务 声明式事务的优点 声明式事务的粒度问题 声明式事务用不对容易失效 Spring事务失效可能是哪些原因 Transactional(rollbackFor Exception.class)注解 Spring 事务的实现原理 事务传播机制 介绍 用法 rollbackFor 场景举例 …...
Minecraft个人服务器搭建自己的皮肤站并实现外置登录更换自定义皮肤组件
Minecraft个人服务器搭建自己的皮肤站并实现外置登录更换自定义皮肤组件 大家好,我是艾西有不少小伙伴非常喜欢我的世界Minecraft游戏,今天小编跟大家分享下Minecraft个人服务器怎么设置皮肤站。 Minecraft皮肤站是什么?其实官网就有皮肤站…...
解决ubuntu中没有网络连接的图标
现象:Ubuntu连接网络 在设置中没有显示网络图标 解决方案: 命令为 sudo nmcli networking off sudo nmcli networking on sudo service network-manager restart 重启ubuntu,网络连接完成...
数据结构基本概念-Java常用算法
数据结构基本概念-Java常用算法 1、数据结构基本概念2、数据逻辑结构3、算法时间复杂度 1、数据结构基本概念 数据(Data):数据是信息的载体,其能够被计算机识别、存储和加工处理,是计算机程序加工的“原材料”。数据元…...
流程图设计制作都有哪些好用的工具
流程图是一种直观的图形表示方式,通常用于显示事物的过程、步骤和关系。在现代工作中,设计师经常需要绘制各种流程图来解释工作过程、产品设计等。本文将为您推荐7个流程图软件,以帮助您快速绘制高效的流程图,并提高工作效率。 即…...
2023-10-7
今日感冒了,整个人都不舒服,现在才 8 点,已经不想学习了。嗓子眼感觉不属于我了,痛死了。然后头也晕。 哎,今天又啥也没干 今日学习: 哎,今天就做了 RWCTF2022-Digging-into-kernel-2 这道题…...
【java源码】二甲医院his系统全套源码 云HIS系统源码
基层医院云HIS系统源码 一款满足基层医院各类业务需要的云HIS系统。该系统能帮助基层医院完成日常各类业务,提供病患挂号支持、病患问诊、电子病历、开药发药、会员管理、统计查询、医生站和护士站等一系列常规功能,还能与公卫、PACS等各类外部系统融合&…...
LRU 缓存 -- 哈希链表
相关题目 146. LRU 缓存 要让 put 和 get ⽅法的时间复杂度为 O(1),我们可以总结出 cache 这个数据结构必要的条件: 1、显然 cache 中的元素必须有时序,以区分最近使⽤的和久未使⽤的数据,当容量满了之后要删除最久未使⽤的那个元…...
DWC数字世界大会先导论坛将于10月13日在宁波举办 | 数字技术赋能世界可持续发展
农业经济影响世界数千年,工业经济从欧美发源开始已有数百年,数字经济作为世界未来发展之大势,将成为影响未来数百年的世界命题。在以中国式现代化全面推进中华民族伟大复兴的历史征程中,数字技术、数字经济作为中国式现代化实践最…...
Springboot实现登录功能(token、redis、登录拦截器、全局异常处理)
登录流程: 1、前端调用登录接口,往接口里传入账号,密码 2、根据账号判断是否有这个用户,如果有则继续判断密码是否正确 3、验证成功后,则是根据账号,登录时间生成token(用JWT) 4、将…...
AI工程化—— 如何让AI在企业多快好省的落地?
文章目录 前言内容简介读者对象专家推荐目录赠书活动 前言 作为计算机科学的一个重要领域,机器学习也是目前人工智能领域非常活跃的分支之一。机器学习通过分析海量数据、总结规律,帮助人们解决众多实际问题。随着机器学习技术的发展,越来越多…...
mysqld_multi测试
mysqld_multi测试 mysql版本:5.7.25-log 在OS上分别安装了两套mysql, data目录为/mysql/mysql3306、 /mysql/mysql3307 。 端口分别为3306 、3307 配置文件为: /mysql/mysql3306/my.cnf /mysql/mysql3307/my.cnf 参考文档: htt…...
MDC方式实现简单链路追踪
MDC 方式实现日志链路追踪 拦截器 package com.cdn.log.interceptor;import com.cdn.log.consts.CLogConst; import com.cdn.log.utils.IdUtil; import org.slf4j.MDC; import org.springframework.util.StringUtils; import org.springframework.web.servlet.ModelAndView; im…...
Linux深度学习:除基本命令操作外的实用操作
Linux深度学习:除基本命令操作外的实用操作 软件安装systemctl软连接日期、时区IP地址、主机名网络传输下载和网络请求端口 进程管理主机状态系统资源监控磁盘信息监控网络状态监控 环境变量上传、下载压缩、解压root用户、用户、用户组管理查看、修改权限控制 软件…...
app对接广告变现平台:影响app广告单价的4大因素
在移动应用开发者和媒体公司竞相寻求提高广告变现效率的今天,理解影响APP广告单价的关键因素至关重要。广告单价是广告收入的核心组成部分,它受多种因素的影响,直接关系到媒体的盈利能力。主要因素大概有以下几点:#APP广告变现# …...
【数字化转型】10大数字化转型能力成熟度模型01(IOMM)
一、前言 数字化转型是数据化能力建设的目标和价值,作为一个新兴的课题,目前为止并未出现一个统一的数字化转型成熟度模型。不同的企业和机构,根据自身的发展和认知,推出了自己的企业级或者准行业级标准。这些标准具有很强的参考意…...
2023腾讯云轻量应用服务器和普通服务器有什么区别?
腾讯云轻量服务器和云服务器有什么区别?为什么轻量应用服务器价格便宜?是因为轻量服务器CPU内存性能比云服务器CVM性能差吗?轻量应用服务器适合中小企业或个人开发者搭建企业官网、博客论坛、微信小程序或开发测试环境,云服务器CV…...
SSL证书是什么?1分钟get
在当今互联网世界中,保护数据的完整性和隐私性至关重要,由此,在网络数据安全保护领域,作为保护网络传输数据安全的SSL证书越来越频繁出现。那么你知道SSL证书是什么?SSL证书有哪些类型?SSL证书有什么用吗&a…...
3D打印机升级killpper
本来是想整台新机的,但是想想老机器4max也不能就此放弃,看了看视频,改装升级似乎也没有那么难。然后就是换了喷头、皮带、轴承、挤出机、打印平台、加热板等等。做了干燥箱,改装挤出机结构来适配,风扇口也一并搞掉&…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
