当前位置: 首页 > news >正文

ggkegg | 用这个神包玩转kegg数据库吧!~(一)

1写在前面

好久没更了,实在是太忙了,值班真的是根本不不睡觉啊,一忙一整天,忙到怀疑人生。😭

最近看到比较🔥的就是ggkegg包,感觉使用起来还是有一定难度的。🫠

和大家分享一下使用教程吧,还有一些小坑。💪

2用到的包

rm(list = ls())
library(ggkegg)
library(ggfx)
library(ggraph)
library(igraph)
library(clusterProfiler)
library(dplyr)
library(tidygraph)

3小试牛刀

首先以eco00270为例,获取后转换路径和eco标识符,删除无连接节点并返回igraph对象。🤪

g <- ggkegg(pid="eco00270",
convert_org = c("pathway","eco"),
delete_zero_degree = T,
return_igraph = T)

gg <- ggraph(g, layout="stress")
gg$data$type %>% unique()

gg + geom_edge_diagonal(
aes(color=subtype_name,
filter=type!="maplink"))+
geom_node_point(
aes(filter= !type%in%c("map","compound")),
fill=gg$data[!gg$data$type%in%c("map","compound"),]$bgcolor,
color="black",
shape=21, size=4
)+
geom_node_point(
aes(filter= !type%in%c("map","gene")),
fill=gg$data[!gg$data$type%in%c("map","gene"),]$bgcolor,
color="black",
shape=21, size=6
)+
geom_node_text(
aes(label=converted_name,
filter=type=="gene"),
repel=T,
bg.colour="white")+
theme_void()
alt

4改变nodes颜色

颜狗必备技能,修改配色。😘

g <- pathway("ko00520")
V(g)$color_one <- colorRampPalette(RColorBrewer::brewer.pal(5,"Set1"))(length(V(g)))
V(g)$color_two <- colorRampPalette(RColorBrewer::brewer.pal(5,"Set2"))(length(V(g)))

ggraph(g, x=x, y=y) +
geom_node_rect(aes(xmin=xmin, xmax=x, fill=I(color_one)), alpha=0.5)+
geom_node_rect(aes(xmin=x, xmax=xmax, fill=I(color_two)), alpha=0.5)+
ggfx::with_outer_glow(geom_node_text(aes(label=name %>%
strsplit(":") %>%
sapply("[", 2) %>%
strsplit(" ") %>%
sapply("[", 1),
filter=type=="ortholog"),
size=2), colour="white", expand=1)
alt

V(g)$color_one <- colorRampPalette(RColorBrewer::brewer.pal(5,"Set1"))(length(V(g)))
V(g)$color_two <- colorRampPalette(RColorBrewer::brewer.pal(5,"Set2"))(length(V(g)))
V(g)$color_three <- colorRampPalette(RColorBrewer::brewer.pal(5,"PuOr"))(length(V(g)))
V(g)$color_four <- colorRampPalette(RColorBrewer::brewer.pal(5,"Paired"))(length(V(g)))

V(g)$space <- V(g)$width/4

ggraph(g, x=x, y=y) +
geom_node_rect(aes(xmin=xmin, xmax=xmin+space, fill=I(color_one), filter=type=="ortholog"))+
geom_node_rect(aes(xmin=xmin+space, xmax=xmin+2*space, fill=I(color_two), filter=type=="ortholog"))+
geom_node_rect(aes(xmin=xmin+2*space, xmax=xmin+3*space, fill=I(color_three), filter=type=="ortholog"))+
geom_node_rect(aes(xmin=xmin+3*space, xmax=xmin+4*space, fill=I(color_four), filter=type=="ortholog"))+
ggfx::with_outer_glow(geom_node_text(aes(label=name %>%
strsplit(":") %>%
sapply("[", 2) %>%
strsplit(" ") %>%
sapply("[", 1),
filter=type=="ortholog"),
size=2), colour="white", expand=1)+
theme_void()
alt

5Global maps展示

更宏观的展示结果。🤩

pathway("ko01200") %>% 
process_reaction() %>%
activate(nodes) %>%
mutate(x=NULL, y=NULL,
comp=convert_id("compound")) %>%
mutate(degree=centrality_degree(mode="all")) %>%
ggraph(layout="kk")+
geom_node_point(aes(color=degree,
filter=type=="compound"))+
geom_edge_parallel(
color="grey",
end_cap=circle(1,"mm"),
start_cap=circle(1,"mm"),
arrow=arrow(length=unit(1,"mm"),type="closed"))+
geom_node_text(aes(label=comp,filter=degree>15),
repel=TRUE, bg.colour="white")+
theme_graph()
alt

6highlight指定nodes和edges

可以使用highligh_set_edgeshighlight_set_nodes函数突出你想要突出的nodesedges。😘

pathway("ko01230") %>% 
process_line() %>%
activate(nodes) %>%
mutate(
compound=convert_id("compound"),
M00002=highlight_set_nodes(module("M00002")@reaction_components)) %>%
activate(edges) %>%
mutate(M00002=highlight_set_edges(module("M00002")@definition_components)) %>%
ggraph(x=x, y=y)+
geom_edge_link()+
with_outer_glow(geom_edge_link(aes(color=M00002, filter=M00002)),
colour="pink")+
geom_node_point(shape=21,aes(filter=type!="line"))+
with_outer_glow(geom_node_point(shape=21, aes(filter=M00002, color=M00002)),
colour="pink")+
geom_node_text(aes(label=compound, filter=M00002), repel=TRUE,
bg.colour="white", size=2)+
theme_void()
alt

我们试着突出一下代谢相关pathwayko01100),需要用到M00021module。😋

g <- pathway("ko01100") %>% 
process_line() %>%
highlight_module(module("M00021")) %>%
mutate(compound=convert_id("compound"))

g %>% ggraph(x=x, y=y) +
geom_node_point(size=1, aes(color=I(fgcolor),
filter=fgcolor!="none" & type!="line"))+
geom_edge_link(width=0.1, aes(color=I(fgcolor),
filter=type=="line"& fgcolor!="none"))+
with_outer_glow(
geom_edge_link(width=1,
aes(color=I(fgcolor),
filter=fgcolor!="none" & M00021)),
colour="red", expand=3
)+
with_outer_glow(
geom_node_point(size=2,
aes(color=I(fgcolor),
filter=fgcolor!="none" & M00021)),
colour="red", expand=3
)+
theme_void()
alt

可以看到多个module涉及Cysteinemethionine的代谢,我们可以通过使用ggforce来高亮M00017。😘

list_of_modules <- c("M00021","M00338","M00609","M00017","M00034","M00035","M00368")
for (mm in list_of_modules) {
g <- g %>% highlight_module(module(mm))
}

ggraph(g,x=x,y=y,layout="manual") +
geom_edge_link0(width=0.5, color="grey")+
geom_edge_link(color="red",aes(filter=M00017|M00021|M00338|M00609|M00034|M00035|M00368))+
geom_node_point(size=2, color="red",aes(filter=M00017|M00021|M00338|M00609|M00034|M00035|M00368))+
ggforce::geom_mark_rect(aes(fill=M00017,
label=module("M00017")@name,
x=x, y=y,
group=M00017,
filter=M00017),
label.fill = "transparent",
label.fontsize = 10,
expand=unit(1,"mm"))+
theme_void()
alt

可视化一下compounds,可以用geom_node_text,ggrepel, 和shadowtext。🤪

Rg %>% ggraph(x=x, y=y) +
geom_node_point(size=1, aes(color=I(fgcolor),
filter=fgcolor!="none" & type!="line"))+
geom_edge_link(width=0.1, aes(color=I(fgcolor),
filter=type=="line"& fgcolor!="none"))+
with_outer_glow(
geom_edge_link(width=1,
aes(color=I(fgcolor),
filter=fgcolor!="none" & M00021)),
colour="red", expand=3
)+
with_outer_glow(
geom_node_point(size=2,
aes(color=I(fgcolor),
filter=fgcolor!="none" & M00021)),
colour="red", expand=3
)+
geom_node_text(aes(label=compound, filter=M00021),
repel=T, bg.colour="white", size=5)+
theme_void()
alt

局部放大一下!~😘

annot <- g %>%  ggraph(x=x, y=y)+
with_outer_glow(
geom_edge_link(width=1,
aes(color=I(fgcolor),
filter=fgcolor!="none" & M00021)),
colour="red", expand=3
)+
with_outer_glow(
geom_node_point(size=2,
aes(color=I(fgcolor),
filter=fgcolor!="none" & M00021)),
colour="red", expand=3
)+
geom_node_text(aes(label=compound, filter=M00021),
repel=TRUE, bg.colour="white", size=5)
g %>%
ggraph(x=x, y=y) +
geom_node_point(size=1, aes(color=I(fgcolor),
filter=fgcolor!="none" & type!="line"))+
geom_edge_link(width=0.1, aes(color=I(fgcolor),
filter=type=="line"& fgcolor!="none"))+
with_outer_glow(
geom_edge_link(width=1,
aes(color=I(fgcolor),
filter=fgcolor!="none" & M00021)),
colour="red", expand=3
)+
with_outer_glow(
geom_node_point(size=2,
aes(color=I(fgcolor),
filter=fgcolor!="none" & M00021)),
colour="red", expand=3
)+
annotation_custom(ggplotify::as.grob(annot),
ymin=-1500, ymax=0, xmin=0, xmax=1500)+
theme_void()
alt

alt
最后祝大家早日不卷!~

点个在看吧各位~ ✐.ɴɪᴄᴇ ᴅᴀʏ 〰

📍 往期精彩

📍 🤩 LASSO | 不来看看怎么美化你的LASSO结果吗!?
📍 🤣 chatPDF | 别再自己读文献了!让chatGPT来帮你读吧!~
📍 🤩 WGCNA | 值得你深入学习的生信分析方法!~
📍 🤩 ComplexHeatmap | 颜狗写的高颜值热图代码!
📍 🤥 ComplexHeatmap | 你的热图注释还挤在一起看不清吗!?
📍 🤨 Google | 谷歌翻译崩了我们怎么办!?(附完美解决方案)
📍 🤩 scRNA-seq | 吐血整理的单细胞入门教程
📍 🤣 NetworkD3 | 让我们一起画个动态的桑基图吧~
📍 🤩 RColorBrewer | 再多的配色也能轻松搞定!~
📍 🧐 rms | 批量完成你的线性回归
📍 🤩 CMplot | 完美复刻Nature上的曼哈顿图
📍 🤠 Network | 高颜值动态网络可视化工具
📍 🤗 boxjitter | 完美复刻Nature上的高颜值统计图
📍 🤫 linkET | 完美解决ggcor安装失败方案(附教程)
📍 ......

alt

alt

alt

本文由 mdnice 多平台发布

相关文章:

ggkegg | 用这个神包玩转kegg数据库吧!~(一)

1写在前面 好久没更了&#xff0c;实在是太忙了&#xff0c;值班真的是根本不不睡觉啊&#xff0c;一忙一整天&#xff0c;忙到怀疑人生。&#x1f62d; 最近看到比较&#x1f525;的就是ggkegg包&#xff0c;感觉使用起来还是有一定难度的。&#x1fae0; 和大家分享一下使用教…...

【小黑送书—第三期】>>《深入浅出SSD》

近年来国家大力支持半导体行业&#xff0c;鼓励自主创新&#xff0c;中国SSD技术和产业良性发展&#xff0c;产业链在不断完善&#xff0c;与国际厂商的差距逐渐缩小。但从行业发展趋势来看&#xff0c;SSD相关技术仍有大幅进步的空间&#xff0c;SSD相关技术也确实在不断前进。…...

linux虚拟机查看防火墙状态

linux虚拟机查看防火墙状态 在Linux虚拟机中&#xff0c;你可以通过以下几种方法查看防火墙状态&#xff1a; 查看iptables防火墙状态 对于使用iptables防火墙的Linux系统&#xff0c;可以使用以下命令查看防火墙状态&#xff1a; sudo iptables -L -v -n查看firewalld防火墙…...

Docker 安装 MongoDB

一、什么是MongoDB MongoDB 是一个基于分布式文件存储的数据库。是一个介于关系数据库和非关系数据库之间的产品&#xff0c;是非关系数据库当中功能最丰富&#xff0c;最像关系数据库的。 二、MongoDB的安装 这里使用docker来安装MongoD 1.docker 拉取mysql镜像 docker pu…...

c++解压压缩包文件

功能实现需要依赖相关头文件和库文件&#xff0c;我这里的是64位的。需要的可以在这下载&#xff1a;https://download.csdn.net/download/bangtanhui/88403596 参考代码如下&#xff1a; #include <zip.h> #pragma comment(lib,"libzip.lib")//解压压缩包 /…...

MySql学习笔记:MySql性能优化

本文是自己的学习笔记&#xff0c;主要参考以下资料 - 大话设计模式&#xff0c;程杰著&#xff0c;清华大学出版社出版 - 马士兵教育 1、MySql调优金字塔2、MySql调优2.1、查询性能2.1.1、慢查询2.1.1.1、总结 1、MySql调优金字塔 Mysql 调优时设计三个层面&#xff0c;分别是…...

机器学习(四十八):粒子群优化(PSO)-提升机器学习模型准确率的秘密武器

文章目录 PSO算法简介为什么使用PSO优化机器学习参数?PSO与其他启发式算法的比较如何使用PSO优化机器学习模型?模块安装和测试例子PSO优化决策树总结PSO算法简介 粒子群优化算法(Particle Swarm Optimization,PSO)是一种模拟鸟群觅食行为的启发式算法。在PSO算法中,每个…...

MySQL - mysql服务基本操作以及基本SQL语句与函数

文章目录 操作mysql客户端与 mysql 服务之间的小九九了解 mysql 基本 SQL 语句语法书写规范SQL分类DDL库表查增 mysql数据类型数值类型字符类型日期类型 示例修改&#xff08;表操作&#xff09; DML添加数据删除数据修改数据 DQL查询多个字段条件查询聚合函数分组查询排序查询…...

[图论]哈尔滨工业大学(哈工大 HIT)学习笔记16-22

视频来源&#xff1a;2.7.1 补图_哔哩哔哩_bilibili 目录 1. 补图 1.1. 补图 2. 双图 2.1. 双图定理 3. 图兰定理/托兰定理 4. 极图理论 5. 欧拉图 5.1. 欧拉迹 5.2. 欧拉闭迹 5.3. 欧拉图 5.4. 欧拉定理 5.5. 伪图 1. 补图 1.1. 补图 &#xff08;1&#xff09;…...

使用关键字abstract 声明抽象类-PHP8知识详解

抽象类只能作为父类使用&#xff0c;因为抽象类不能被实例化。抽象类使用关键字abstract 声明&#xff0c;具体的使用语法格式如下&#xff1a; abstract class 抽象类名称{ //抽象类的成员变量列表 abstract function 成员方法1(参数); //抽象类的成员方法 abstract functi…...

Java中使用正则表达式

正则表达式 正则表达式&#xff08;Regular Expression&#xff09;是一种用于匹配、查找和替换文本的强大工具。它由一系列字符和特殊字符组成&#xff0c;可以用来描述字符串的模式。在编程和文本处理中&#xff0c;正则表达式常被用于验证输入、提取信息、搜索和替换文本等…...

Python之字符串分割替换移除

Python之字符串分割替换移除 分割 split(sepNone, maxsplit-1) -> list of strings 从左至右sep 指定分割字符串&#xff0c;缺省的情况下空白字符串作为分隔符maxsplit 指定分割的次数&#xff0c;-1 表示遍历整个字符串立即返回列表 rsplit(sepNone, maxsplit-1) -> …...

ubuntu增加内存

文章目录 1、硬盘操作步骤第二步:点击【扩展】(必须关闭ubuntu电源才能修改)第三步:修改【最大磁盘容量大小】1、硬盘操作步骤 最近发现Ubuntu空间不足,怎么去扩容呢? 第一步:点击【硬盘】 第二步:点击【扩展】(必须关闭ubuntu电源才能修改) 第三步:修改【最大磁…...

黑客都是土豪吗?真实情况是什么?

黑客的利益链条真的这么大这么好么,连最外围的都可以靠信息不对称赚普通人大学毕业上班族想都不敢想的金钱数目,黑客们是不是基本都是土豪 网络技术可以称为黑客程度的技术是不是真的很吃香&#xff1f;如果大部分大学生的智力资源都用在学习网络技术&#xff0c;会不会出现僧…...

企业想过等保,其中2FA双因素认证手段必不可少

随着信息技术的飞速发展&#xff0c;网络安全问题日益凸显。等保2.0时代的到来&#xff0c;意味着企业和组织需要更加严格地保护自身的信息安全。而在这个过程中&#xff0c;双因素认证的重要性逐渐得到广泛认可。本文将探讨 2FA 双因素认证的重要性。 在了解 2FA 双因素认证的…...

Combination Lock

题目描述 新学期开学&#xff0c;您又回到了学校。您需要记住如何操作储物柜上的组合锁。一个组合锁的常见设计如图 1 所示。组合锁有一个圆形刻度表盘&#xff0c;在表盘上&#xff0c;有 40 个编号为从 0 至 39 的刻度&#xff0c;正上方有一个刻度指针。一个组合由这些数字…...

SpringBoot解决LocalDateTime返回数据为数组问题

现象&#xff1a; 在SpringBoot项目中&#xff0c;接口返回的数据出现LocalDateTime对象被转换成了数组 原因分析&#xff1a; 默认序列化情况下会使用SerializationFeature.WRITE_DATES_AS_TIMESTAMPS。使用这个解析时就会打印出数组。 解决方法&#xff1a; 在配置类中…...

【数字人】2、MODA | 基于人脸关键点的语音驱动单张图数字人生成(ICCV2023)

文章目录 一、背景二、方法2.1 问题描述和数据预处理2.2 Mapping-Once network with Dual Attentions2.3 Facial Composer Network2.4 使用 TPE 来合成人像图片 三、效果3.1 训练细节3.2 数据3.3 测评指标3.4 结果比较 四、代码4.1 数据前处理4.2 训练4.3 推理 论文&#xff1a…...

群狼调研(长沙物业第三方评优)开展房地产市场调查内容设计

湖南房地产市场近年来表现出多元化的发展趋势。为了在竞争激烈的市场中获得更好的发展&#xff0c;房地产企业需要密切关注市场变化&#xff0c;合理规划开发项目&#xff0c;同时提高产品质量和服务水平&#xff0c;以满足消费者的需求和期望。群狼调研(长沙神秘顾客调查)在房…...

计算机网络-计算机网络体系结构-物理层

目录 一、通信基础 通信方式 传输方式 码元 传输率 *二 准则 2.1奈氏准则(奈奎斯特定理) 2.2香农定理 三、信号的编码和调制 *数字数据->数字信号 数字数据->模拟信号 模拟数据->数字信号 模拟数据->模拟信号 *四、数据交换方式 电路交换 报文交换…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

文件上传漏洞防御全攻略

要全面防范文件上传漏洞&#xff0c;需构建多层防御体系&#xff0c;结合技术验证、存储隔离与权限控制&#xff1a; &#x1f512; 一、基础防护层 前端校验&#xff08;仅辅助&#xff09; 通过JavaScript限制文件后缀名&#xff08;白名单&#xff09;和大小&#xff0c;提…...