多校联测11 模板题
题目大意
给你四个整数 n , m , s e e d , w n,m,seed,w n,m,seed,w,其中 n , m n,m n,m为两个多项式 A ( x ) = ∑ i = 0 n a i x i A(x)=\sum\limits_{i=0}^na_ix^i A(x)=i=0∑naixi和 B ( x ) = ∑ i = 0 m b i x i B(x)=\sum\limits_{i=0}^mb_ix^i B(x)=i=0∑mbixi的最高次数, s e e d , w seed,w seed,w是用来生成 a i a_i ai和 b i b_i bi的参数。
设 C ( x ) = A ( x ) B ( x ) = ∑ i = 0 n + m c i x i C(x)=A(x)B(x)=\sum\limits_{i=0}^{n+m}c_ix^i C(x)=A(x)B(x)=i=0∑n+mcixi。
有 q q q次询问,第 i i i次输入 l i , r i l_i,r_i li,ri,求 ∑ j = l i r i c j \sum\limits_{j=l_i}^{r_i}c_j j=li∑ricj对 1145141999 1145141999 1145141999( 1145141999 = 2 × 7 × 11 × 13 × 17 × 33647 + 1 1145141999=2\times 7\times 11\times 13\times 17\times 33647+1 1145141999=2×7×11×13×17×33647+1,是一个质数)取模后的值。
构造 a i a_i ai和 b i b_i bi的代码如下,可以对其进行修改来完成此题。
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long u64;
const int p=1145141999;
int a[10000005],b[10000005];
int n,m,q,w;
u64 seed;
u64 rnd()
{u64 x = seed;x ^= x << 13;x ^= x >> 7;x ^= x << 17;return seed = x;
}
int main(){scanf("%d%d%llu%d",&n,&m,&seed,&w);scanf("%d",&q);for(int i=0;i<=n;++i)a[i]=rnd()%w;for(int i=0;i<=m;++i)b[i]=rnd()%w;int l,r;for(int i=1;i<=q;++i){scanf("%d%d",&l,&r);}return 0;
}
1 ≤ n ≤ 6 × 1 0 6 , 1 ≤ q ≤ 25 , 1 ≤ w ≤ 1145141999 1\leq n\leq 6\times 10^6,1\leq q\leq 25,1\leq w\leq 1145141999 1≤n≤6×106,1≤q≤25,1≤w≤1145141999
题解
C ( x ) = A ( x ) B ( x ) = ∑ i = 0 n + m ( ∑ j = 0 i a j b i − j ) x i C(x)=A(x)B(x)=\sum\limits_{i=0}^{n+m}(\sum\limits_{j=0}^ia_jb_{i-j})x^i C(x)=A(x)B(x)=i=0∑n+m(j=0∑iajbi−j)xi
也就是说, c i = ∑ j = 0 i a j b i − j c_i=\sum\limits_{j=0}^ia_jb_{i-j} ci=j=0∑iajbi−j。
那么, ∑ i = 0 t c i = ∑ i = 0 t ∑ j = 0 i a j b i − j = ∑ j = 0 t a j ∑ i = 0 t − j b i \sum\limits_{i=0}^tc_i=\sum\limits_{i=0}^t\sum\limits_{j=0}^ia_jb_{i-j}=\sum\limits_{j=0}^ta_j\sum\limits_{i=0}^{t-j}b_i i=0∑tci=i=0∑tj=0∑iajbi−j=j=0∑taji=0∑t−jbi
令 b i b_i bi的前缀和为 s u m i {sum}_i sumi, S ( t ) = ∑ i = 0 t a i s u m t − i S(t)=\sum\limits_{i=0}^ta_i{sum}_{t-i} S(t)=i=0∑taisumt−i,则答案为 S ( r ) − S ( l − 1 ) S(r)-S(l-1) S(r)−S(l−1)。
求 S ( t ) S(t) S(t)的时间复杂度为 O ( n ) O(n) O(n),所以总时间复杂度为 O ( n q ) O(nq) O(nq)。
code
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long u64;
const long long p=1145141999;
int a[20000005],b[20000005],sum[20000005];
int n,m,q,w;
u64 seed;
u64 rnd()
{u64 x = seed;x ^= x << 13;x ^= x >> 7;x ^= x << 17;return seed = x;
}
long long gt(int t){long long re=0;for(int i=0;i<=t;i++){re=(re+1ll*a[i]*sum[t-i])%p;}return re;
}
int main(){scanf("%d%d%llu%d",&n,&m,&seed,&w);scanf("%d",&q);for(int i=0;i<=n;++i)a[i]=rnd()%w;for(int i=0;i<=m;++i)b[i]=rnd()%w;sum[0]=b[0];for(int i=1;i<=n+m;i++) sum[i]=(1ll*sum[i-1]+b[i])%p;int l,r;for(int i=1;i<=q;++i){scanf("%d%d",&l,&r);printf("%lld\n",(gt(r)-gt(l-1)+p)%p);}return 0;
}
相关文章:
多校联测11 模板题
题目大意 给你四个整数 n , m , s e e d , w n,m,seed,w n,m,seed,w,其中 n , m n,m n,m为两个多项式 A ( x ) ∑ i 0 n a i x i A(x)\sum\limits_{i0}^na_ix^i A(x)i0∑naixi和 B ( x ) ∑ i 0 m b i x i B(x)\sum\limits_{i0}^mb_ix^i B(x)i0∑mbixi…...

Linux SSH连接远程服务器(免密登录、scp和sftp传输文件)
1 SSH简介 SSH(Secure Shell,安全外壳)是一种网络安全协议,通过加密和认证机制实现安全的访问和文件传输等业务。传统远程登录和文件传输方式,例如Telnet、FTP,使用明文传输数据,存在很多的安全…...

从0开始python学习-30.selenium frame子页面切换
目录 1. frame切换逻辑 2. 多层子页面情况进行切换 3. 多个子页面相互切换 1. frame切换逻辑 1.1. 子页面的类型一般分为两种 frame标签 iframe标签 1.2. 子页面里面的元素和主页面的元素是相互独立 子页面元素需要进去切换才能操作 如果已经进入子页面,那么…...

asp.net core 远程调试
大概说下过程: 1、站点发布使用Debug模式 2、拷贝到远程服务器,以及iis创建站点。 3、本地的VS2022的安装目录:C:\Program Files\Microsoft Visual Studio\2022\Professional\Common7\IDE下找Remote Debugger 你的服务器是64位就拷贝x64的目…...
Java spring boot 一次调用多个请求
Java Spring Boot是一种基于Java编程语言的开发框架,它提供了一种快速构建高效、可伸缩和易于维护的企业级应用程序的方式。在实际的应用开发中,我们常常需要调用多个独立的请求来完成某个业务功能。然而,传统的同步方式一次只能调用一个请求…...
DRM全解析 —— CRTC详解(4)
接前一篇文章:DRM全解析 —— CRTC详解(3) 本文继续对DRM中CRTC的核心结构struct drm_crtc的成员进行释义。 3. drm_crtc结构释义 (21)struct drm_object_properties properties /** properties: property tracking …...
六个为Rust构建的IDE
Rust语言的学习曲线适中,介于高级语言和低级语言之间。这门语言既能编写系统软件,将嵌入式设备编译为x86 ARM,也可以用于前端技术,这要归功于WebAssembly。 在日渐成熟的发展中,Rust开始拥有更好的工具来提高效率。最…...
25 Python的collections模块
概述 在上一节,我们介绍了Python的sqlite3模块,包括:sqlite3模块中一些常用的函数和类。在这一节,我们将介绍Python的collections模块。collections模块是Python中的内置模块,它实现了特殊的容器数据类型,提…...
JEPG Encoder IP verilog设计及实现
总体介绍: 采用通用的常规 Verilog 代码编写,可用于任何 FPGA。 该内核不依赖任何专有 IP 内核,而是用 Verilog 编写了实现 JPEG 编码器所需的所有功能,代码完全独立。 编码器内核的输入是一条 24 位数据总线,红色像素、绿色像素和蓝色像素各有 8 位。 信号 "data_i…...

yolov5 web端部署进行图片和视频检测
目录 1、思路 2、代码结构 3、代码运行 4、api接口代码 5、web ui界面 6、参考资料 7、代码分享 1、思路 通过搭建flask微型服务器后端,以后通过vue搭建网页前端。flask是第一个第三方库。与其他模块一样,安装时可以直接使用python的pip命令实现…...

嵌入式养成计划-34--函数库
七十二、 函数库 1. 库的概念 库是一个二进制可执行文件,与二进制可执行程序比较,库是不能单独运行的。 库中存放的是功能函数,没有主函数(main函数) 库需要被载入到内存中使用 标准的基础库中存放了很多已经写好的…...

PM864AK01-eA 3BSE018161R2 工业人工智能供应链先驱
PM864AK01-eA 3BSE018161R2 工业人工智能供应链先驱 吞吐量和Macnica Networks的战略合作伙伴关系将使Macnica Networks的客户能够加速和量化智能工厂计划的投资回报(ROI)。高管、经理和运营负责人可以使用Macnica Networks领先的制造场所数据收集平台和ThroughPut基于约束理论…...

参与现场问题解决总结(Kafka、Hbase)
一. 背景 Kafka和Hbase在现场应用广泛,现场问题也较多,本季度通过对现场问题就行跟踪和总结,同时结合一些调研,尝试提高难点问题的解决效率,从而提高客户和现场满意度。非难点问题(历史遇到过问题…...

基于PSD-ML算法的语音增强算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 1.加窗处理: 2.分帧处理: 3.功率谱密度估计: 4.滤波处理: 5.逆变换处理: 6.合并处理: 5.算法完整程序工程 1.算法…...

【1++的Linux】之文件(一)
👍作者主页:进击的1 🤩 专栏链接:【1的Linux】 文章目录 一,初识文件二,文件接口 一,初识文件 文件就是文件内容属性。因此对文件的操作无非就是对文件内容的操作和对文件属性的操作。 我们访问…...

Kafka 高可用
正文 一、高可用的由来 1.1 为何需要Replication 在Kafka在0.8以前的版本中,是没有Replication的,一旦某一个Broker宕机,则其上所有的Partition数据都不可被消费,这与Kafka数据持久性及Delivery Guarantee的设计目标相悖。同时Pr…...

关于分布式操作系统
关于分布式操作系统,如果你不太理解的话,可以把它看成是传统操作系统延展。二者的区别在于,传统的操作系统都是单机系统,只能在一台计算机上运行,而分布式操作系统是多机系统,每台计算机都是系统中的一个计…...
Pytorch使用DataLoader, num_workers!=0时的内存泄露
描述一下背景,和遇到的问题: 我在做一个超大数据集的多分类,设备Ubuntu 22.04i9 13900KNvidia 409064GB RAM,第一次的训练的训练集有700万张,训练成功。后面收集到更多数据集,数据增强后达到了1000万张。…...

chromedriver下载与安装方法
下载与安装: 1.查看Chrome浏览器版本 首先,需要检查Chrome浏览器的版本。请按照以下步骤进行: 打开Chrome浏览器。 点击浏览器右上角的菜单图标(三个垂直点)。 选择“帮助”(Help)。 在下拉菜单中选择“…...

数据库查询详解
数据库查询操作 前置:首先我们创建一个练习的数据库 /* SQLyog Professional v12.09 (64 bit) MySQL - 5.6.40-log : Database - studentsys ********************************************************************* *//*!40101 SET NAMES utf8 */;/*!40101 SET …...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...

抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...