LeakyReLU激活函数
nn.LeakyReLU
是PyTorch中的Leaky Rectified Linear Unit(ReLU)激活函数的实现。Leaky ReLU是一种修正线性单元,它在非负数部分保持线性,而在负数部分引入一个小的斜率(通常是一个小的正数),以防止梯度消失问题。这种激活函数的数学表达式如下:
negative_slope
:x为负数时的需要的一个系数,控制负斜率的角度。默认值:1e-2(0.01)
本文主要包括以下内容:
- 1.nn.LeakyReLU的函数构成
- 2.nn.LeakyReLU的常见用法
- 3.LeakyReLU函数图像实现
1.nn.LeakyReLU的函数构成
nn.LeakyReLU
是PyTorch中的Leaky Rectified Linear Unit(ReLU)激活函数的实现,它是torch.nn.Module的子类。下面是 nn.LeakyReLU
类的主要构成部分和参数:
class nn.LeakyReLU(negative_slope=0.01, inplace=False)
构造函数参数:
negative_slope
(默认为0.01):这是Leaky ReLU激活函数的负斜率,即在输入值为负数时的斜率。它是一个浮点数,通常设置为一个小的正数,以控制在负数区域的线性部分的斜率。较小的值会导致更线性的行为,较大的值会导致更接近传统ReLU的行为。inplace
(默认为False):如果设置为True,则会在原地修改输入张量,否则将创建一个新的张量作为输出。原地操作可以节省内存,但可能会改变输入张量的值。
nn.LeakyReLU
在前向传播时将输入张量中的负值部分乘以 negative_slope
,从而实现Leaky ReLU激活函数的效果。它通常用于深度神经网络中,以缓解梯度消失问题,并引入非线性变换。
在PyTorch中,我们可以使用nn.LeakyReLU
类来创建Leaky ReLU激活函数,并可以通过参数来设置斜率。
2.nn.LeakyReLU的常见用法
以下是使用nn.LeakyReLU
的一些常见用法:
- 创建Leaky ReLU激活函数层:
import torch.nn as nn# 创建一个Leaky ReLU激活函数层,斜率为0.2(可以根据需要进行调整)
leaky_relu = nn.LeakyReLU(0.2)
- 对张量应用Leaky ReLU激活函数:
import torch# 创建一个示例输入张量
input_tensor = torch.tensor([-1.0, 2.0, -3.0, 4.0, -5.0])# 应用Leaky ReLU激活函数
output_tensor = leaky_relu(input_tensor)
在上面的示例中,output_tensor
将包含应用Leaky ReLU激活函数后的结果,其中负数部分被乘以了斜率0.2。
使用Leaky ReLU激活函数的一个主要优势是它可以缓解梯度消失问题,特别是在深度神经网络中。我们可以根据实际问题和实验结果来调整斜率的值,以获得最佳性能。
下面是使用示例:
import torch
import torch.nn as nn# 创建LeakyReLU激活函数层,默认的negative_slope是0.01
leaky_relu = nn.LeakyReLU()# 示例输入张量
input_tensor = torch.tensor([-1.0, 2.0, -3.0, 4.0, -5.0])# 应用Leaky ReLU激活函数
output_tensor = leaky_relu(input_tensor)print(output_tensor)
#输出结果
#tensor([-0.0100, 2.0000, -0.0300, 4.0000, -0.0500])
这将输出一个张量,其中负数部分被乘以了默认的 negative_slope
值0.01。
3.LeakyReLU函数图像实现
Leaky ReLU(Leaky Rectified Linear Unit)激活函数在非负数部分保持线性,而在负数部分引入一个小的斜率(负斜率)。这个斜率通常是一个小的正数,例如0.01。下面是Leaky ReLU函数的图像示例,其中斜率设置为0.01:
import numpy as np
import matplotlib.pyplot as plt# 定义Leaky ReLU函数
def leaky_relu(x, negative_slope=0.01):return np.where(x >= 0, x, negative_slope * x)# 生成输入值范围
x = np.linspace(-5, 5, 100)# 计算Leaky ReLU的输出
y = leaky_relu(x, negative_slope=0.01)# 绘制Leaky ReLU函数的图像
plt.plot(x, y, label='Leaky ReLU (0.01)', color='b')
plt.xlabel('Input')
plt.ylabel('Output')
plt.title('Leaky ReLU Activation Function')
plt.axhline(0, color='black', linewidth=0.5, linestyle='--')
plt.axvline(0, color='black', linewidth=0.5, linestyle='--')
plt.legend()
plt.grid(True)
plt.show()
运行此段代码,即可得到LeakyReLU函数图像
上述代码生成了Leaky ReLU激活函数的图像,其中斜率设置为0.01。在图像中,我们可以看到,在负数区域,函数引入了一个小的负斜率,而在非负数区域,函数保持线性,值等于输入值。这是Leaky ReLU激活函数的基本特点,它允许一些负数值通过,并且对于大部分正数值保持线性。
我们可以通过更改negative_slope
参数的值来调整Leaky ReLU函数的斜率,以满足不同需求。不同的斜率值会产生不同的非线性行为。
相关文章:

LeakyReLU激活函数
nn.LeakyReLU 是PyTorch中的Leaky Rectified Linear Unit(ReLU)激活函数的实现。Leaky ReLU是一种修正线性单元,它在非负数部分保持线性,而在负数部分引入一个小的斜率(通常是一个小的正数),以防…...

Qt单一应用实例判断
原本项目中使用QSharedMemory的方法来判断当前是否已存在运行的实例,但在MacOS上,当程序异常崩溃后,QSharedMemory没有被正常销毁,导致应用程序无法再次被打开。 对此,Qt assistant中有相关说明: 摘抄 qt-s…...

企业AI工程化之路:如何实现高效、低成本、高质量的落地?
MLOps工程实践 概述面临挑战目的内容简介读者对象专家推荐目录 写在末尾: 主页传送门:📀 传送 概述 作为计算机科学的一个重要领域,机器学习也是目前人工智能领域非常活跃的分支之一。机器学习通过分析海量数据、总结规律&#x…...

最短路径专题8 交通枢纽 (Floyd求最短路 )
题目: 样例: 输入 4 5 2 0 1 1 0 2 5 0 3 3 1 2 2 2 3 4 0 2 输出 0 7 思路: 由题意,绘制了该城市的地图之后,由给出的 k 个编号作为起点,求该点到各个点之间的最短距离之和最小的点是哪个,并…...

文件扫描模块
文章目录 前言文件扫描模块设计初级扫描方案一实现单线程扫描整合扫描步骤 设计初级扫描方案二周期性扫描 总结 前言 我们这个模块考虑的是数据库里面的内容从哪里获取。 获取完成后,这时候,我们就需要把目录里面文件/子文件都获取出来,并存入数据库。 文件扫描模…...

MySQL之主从复制
概述: 将主库的数据 变更同步到从库,从而保证主库和从库数据一致。 它的作用是 数据备份,失败迁移,读写分离,降低单库读写压力 原理: 主服务器上面的任何修改都会保存在二进制日志( Bin-log日志…...
[leetcode 单调栈] 901. 股票价格跨度 M
设计一个算法收集某些股票的每日报价,并返回该股票当日价格的 跨度 。 当日股票价格的 跨度 被定义为股票价格小于或等于今天价格的最大连续日数(从今天开始往回数,包括今天)。 例如,如果未来 7 天股票的价格是 [100…...
Java线程池:并发编程的利器
Java线程池:并发编程的利器 在多任务、高并发的时代,Java并发编程显得尤为重要。其中,Java线程池是一种高效的管理线程的工具,能够提高应用程序的性能和响应速度。本文将深入探讨Java线程池的工作原理、应用场景以及简单示例&…...
ARM硬件断点
hw_breakpoint 是由处理器提供专门断点寄存器来保存一个地址,是需要处理器支持的。处理器在执行过程中会不断去匹配,当匹配上后则会产生中断。 内核自带了硬件断点的样例linux-3.16\samples\hw_breakpoint\data_breakpoint.c static void sample_hbp_h…...
Java使用WebSocket(基础)
准备一个html页面 <!DOCTYPE HTML> <html> <head><meta charset"UTF-8"><title>WebSocket Demo</title> </head> <body><input id"text" type"text" /><button onclick"send()&…...

图像处理与计算机视觉--第五章-图像分割-自适应阈值分割
文章目录 1.自适应阈值分割介绍2.自适应阈值函数参数解析3.高斯概率函数介绍4.自适应阈值分割核心代码5.自适应阈值分割效果展示6.参考文章及致谢 1.自适应阈值分割介绍 在图片处理过程中,针对铺前进行二值化等操作的时候,我们希望能够将图片相应区域内所…...

记一次问题排查
1785年,卡文迪许在实验中发现,把不含水蒸气、二氧化碳的空气除去氧气和氮气后,仍有很少量的残余气体存在。这种现象在当时并没有引起化学家的重视。 一百多年后,英国物理学家瑞利测定氮气的密度时,发现从空气里分离出来…...

【Spring Boot】创建一个 Spring Boot 项目
创建一个 Spring Boot 项目 1. 安装插件2. 创建 Spring Boot 项目3. 项目目录介绍和运行注意事项 1. 安装插件 IDEA 中安装 Spring Boot Helper / Spring Assistant / Spring Initializr and Assistant插件才能创建 Spring Boot 项⽬ (有时候不用安装,直…...
flutter中使用缓存
前言 在flutter项目中使用ListView或者PageView等有滚动条组件的时候,切换页面的时候,再切换回来会丢失之前的滑动状态,这个时候就需要需要使用缓存功能 缓存类 import package:flutter/material.dart;class KeepAliveWrapper extends Sta…...

京东数据分析平台:9月中上旬白酒消费市场数据分析
9月份,围绕白酒的热点不断。9月5日,瑞幸咖啡官微发布消息称,瑞幸与贵州茅台跨界合作推出的酱香拿铁刷新单品纪录,首日销量突破542万杯,销售额破1亿元。9月14日,贵州茅台官微发布消息称与德芙推出联名产品“…...

Linux安装 spark 教程详解
目录 一 准备安装包 二 安装 scala 三 修改配置文件 1)修改 workers 文件 2)修改 spark-env.sh文件 四 进入 spark 交互式平台 一 准备安装包 可以自行去 spark 官网下载想要的版本 这里准备了 spark3.1.2的网盘资源 链接: https://pan.baidu.com…...

动态内存管理函数(malloc,calloc,realloc,free)
动态内存函数 1.1malloc和free C语言提供了一个动态内存开辟的函数: void* malloc (size_t size); 这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针。 如果开辟成功,则返回一个指向开辟好空间的指针。如果开辟失败&#…...

云表|都有生产管理模块,MES和ERP有什么不同,该如何选择
MES和ERP是生产制造领域的两大知名系统,虽然早已声名鹊起,但仍有不少人难以明确区分两者的差异。下面将详细阐述这两个系统的不同之处。首先,要了解MES和ERP的定义。 MES系统:全称制造执行系统(Manufacturing Executio…...

C语言 - 数组
目录 1. 一维数组的创建和初始化 1.1 数组的创建 1.2 数组的初始化 1.3 一维数组的使用 1.4 一维数组在内存中的存储 2. 二维数组的创建和初始化 2.1 二维数组的创建 2.2 二维数组的初始化 2.3 二维数组的使用 2.4 二维数组在内存中的存储 3. 数组越界 4. 数组作为函数参数 4.1…...
Vue 中的插槽(Slot),有什么用,不同插槽的区别?
Vue 中的插槽(Slot案例详解) 是一种非常有用的功能,用于组件之间的内容分发和复用。以下是关于插槽的一些重要概念: 插槽的作用: 插槽允许你将组件的内容分发到其子组件中,以实现灵活的组件复用和自定义布局。通过插槽…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...