当前位置: 首页 > news >正文

图论---最小生成树问题

        在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树。解决最小生成树问题一般有两种算法:Kruskal算法和Prim算法。

Kruskal算法

原理:基本思想是从小到大加入边,是个贪心算法。我们将图中的每个边按照权重大小进行排序,每次从边集中取出权重最小且两个顶点都不在同一个集合的边加入生成树中。注意:如果这两个顶点都在同一集合内,说明已经通过其他边相连,因此如果将这个边添加到生成树中,那么就会形成环。这样反复做,直到选出n-1条边。时间复杂度为O(m*logm)

算法过程:此算法可以称为“加边法”,初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里。 具体过程如下所示: 步骤1:先对图中所有的边按照权值进行排序 步骤2:如果当前这条边的两个顶点不在一个集合里面,那么就用并查集的Union函数把他们合并在一个集合里面(也就是把他们放在最小生成树里面),如果在一个并查集里面,我们就舍弃这条边,不需要这条边。 步骤3:一直执行步骤2,知道当边数等于n-1(n为节点个数),那就说明这n个顶点就连合并在一个集合里面了;如果边数不等于顶点数目减去1,那么说明这些边就不连通,即无法构成最小生成树。

代码框架:

int n, m; // n是点数,m是边数 
int p[n + 1]; // 并查集的父节点数组 
struct Edge{ // 存储边  int a, b, w; bool operator< (const Edge &W)const { return w < W.w; } 
}edges[m]; 
​
int find(int x){ // 并查集核心操作 return p[x] == x ? x : p[x] = find(p[x]);
}
void init(){ // 初始化并查集 for(int i = 1; i <= n; i++){p[i] = i;}
}
int kruskal() {sort(edges, edges + m); init();int res = 0, cnt = 0; for (int i = 0; i < m; i++) { // 从m条边选择n-1条边int a = edges[i].a, b = edges[i].b, w = edges[i].w; a = find(a), b = find(b); if (a != b)  { // 如果两个连通块不连通,则将这两个连通块合并p[a] = b; res += w; cnt++; } }if (cnt < n - 1) return INF; return res; 
}

Prim算法

原理:基本思想是从一个结点开始,不断加点。因此该算法可以称为“加点法”,每次迭代选择代价最小的边对应的点,加入到最小生成树中。算法从某一个顶点s开始,逐渐长大覆盖整个连通网的所有顶点。时间复杂度为O(n * n + m)。

算法过程:

  1. 用两个集合A{},B{}分别表示找到的点集,和未找到的点集;

  2. 我们以A中的点为起点a,在B中找一个点为终点b,这两个点构成的边(a,b)的权值是其余边中最小的

  3. 重复上述步骤#2,直至B中的点集为空,A中的点集为满

代码框架:

int n; // 节点个数
vector<vector<int>> g(n, vector<int>(n)); // 邻接矩阵,存储所有边
vector<int> dis(n); // 存储其他节点到当前最小生成树的距离
vector<bool> v(n); // 存储每个节点是否加入到最小生成树中
​
// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim(){const int inf = 0x3f3f3f3f;memset(dis, 0x3f, sizeof dis);int res = 0;for(int i = 0; i < n; i++){int p = -1;for(int j = 0; j < n; j++){if(!v[j] && (p == -1 || dis[j] < dis[p])){p = j;}}if(i && dis[p] == inf){ // dis[p] = inf说明找到的节点与最小生成树不连通,但是当i = 0说明是第一个节点,不考虑连通return inf;}if(i){res += dis[p];}v[p] = true;for(int j = 0; j < n; j++){dis[j] = min(dis[j], g[p][j]); // 与Dijkstra算法的区别}}return res;
}
​

题单

1584. 连接所有点的最小费用 - 力扣(LeetCode)

相关文章:

图论---最小生成树问题

在连通网的所有生成树中&#xff0c;所有边的代价和最小的生成树&#xff0c;称为最小生成树。解决最小生成树问题一般有两种算法&#xff1a;Kruskal算法和Prim算法。 Kruskal算法 原理&#xff1a;基本思想是从小到大加入边&#xff0c;是个贪心算法。我们将图中的每个边按…...

elementplus 时间范围选择器限制选择时间范围

<el-date-pickerv-model"form.time" type"daterange"range-separator"-"start-placeholder"开始时间"end-placeholder"结束":disabled-date"disabledDate"calendar-Change"calendarChange" />co…...

【网络】抓包工具Wireshark下载安装和基本使用教程

&#x1f341; 博主 "开着拖拉机回家"带您 Go to New World.✨&#x1f341; &#x1f984; 个人主页——&#x1f390;开着拖拉机回家_Linux,大数据运维-CSDN博客 &#x1f390;✨&#x1f341; &#x1fa81;&#x1f341; 希望本文能够给您带来一定的帮助&#x1…...

Metasequoia 4 水杉3D建模工具 附序列号

Metasequoia 4是一款非常强大的3D水杉建模工具&#xff0c;它基于多边形建模技术&#xff0c;可以用于创建各种对象并支持多种第三方3DCG软件的文件格式&#xff0c;是一款非常适合从爱好到业务&#xff0c;支持3D电脑绘图&#xff0c;3D印刷&#xff0c;游戏开发等的3D建模软件…...

股票杠杆交易平台排名:淘配网推荐的十大平台

在投资世界中&#xff0c;股票杠杆交易一直以其提供更高回报机会的吸引力而备受欢迎。随着市场的不断发展&#xff0c;出现了越来越多的股票杠杆交易平台。本文将为您介绍淘配网推荐的十大股票杠杆交易平台&#xff0c;并分析它们的特点。 富灯网 - 富灯网以其全面的杠杆产品和…...

CoreData + CloudKit 在初始化 Schema 时报错 A Core Data error occurred 的解决

问题现象 如果希望为 CoreData 支持的 App 增加云数据备份和同步功能,那么 CloudKit 是绝佳的选择。CloudKit 会帮我们默默处理好一切,我们基本不用为升级而操心。 不过,有时在用本地 CoreData NSManagedObjectModel 初始化 iCloud 中的 Schema 时会发生如下错误: Error …...

修炼k8s+flink+hdfs+dlink(三:安装dlink)

一&#xff1a;mysql初始化。 mysql -uroot -p123456 create database dinky; grant all privileges on dinky.* to dinky% identified by dinky with grant option; flush privileges;二&#xff1a;上传dinky。 上传至目录/opt/app/dlink tar -zxvf dlink-release-0.7.4.t…...

Linux 系统性能瓶颈分析(超详细)

Author&#xff1a;rab 目录 前言一、性能指标1.1 进程1.1.1 进程定义1.1.2 进程状态1.1.3 进程优先级1.1.4 进程与程序间的关系1.1.5 进程与进程间的关系1.1.6 进程与线程的关系 1.2 内存1.2.1 物理内存与虚拟内存1.2.2 页高速缓存与页写回机制1.2.3 Swap Space 1.3 文件系统1…...

kafka与zookeeper的集群

基础配置 systemctl stop firewalld && systemctl disable firewalld setenforce 0 sed -i s/SELINUXenforcing/SELINUXdisabled/ /etc/selinux/configvi /etc/hosts ip1 node1 ip2 node2 ip3 node3zookeeper介绍 zookeeper是一个分布式的协调服务&#xff0c;主要用…...

sqlalchemy 连接池

报错 sqlalchemy.exc.TimeoutError: QueuePool limit of size 100 overflow 10 reached, connection timed out, timeout 30 (Background on this error at: http://sqlalche.me/e/3o7r) 查看数据库未活动超时时间 show variables like "interactive_timeout";一般…...

用Blender制作YOLO目标检测器训练数据

推荐&#xff1a;用 NSDT编辑器 快速搭建可编程3D场景 本文将介绍一种非常有吸引力的机器学习训练数据的替代方案&#xff0c;用于为给定的特定应用程序收集数据。 无论应用程序类型如何&#xff0c;这篇博文都旨在向读者展示使用 Blender 等开源资源生成合成数据&#xff08;S…...

c++视觉处理---均值滤波

均值滤波 cv::blur()函数是OpenCV中用于应用均值滤波的函数。均值滤波是一种简单的平滑技术&#xff0c;它计算每个像素周围像素的平均值&#xff0c;并用该平均值替代原始像素值。这有助于降低图像中的噪声&#xff0c;并可以模糊图像的细节。 以下是cv::blur()函数的基本用…...

QT基础入门——Qt事件(五)

前言&#xff1a; 事件&#xff08;event&#xff09;是由系统或者 Qt 本身在不同的时刻发出的。当用户按下鼠标、敲下键盘&#xff0c;或者是窗口需要重新绘制的时候&#xff0c;都会发出一个相应的事件。一些事件在对用户操作做出响应时发出&#xff0c;如键盘事件等&#x…...

自学黑客方法-----(网络安全)

如果你想自学网络安全&#xff0c;首先你必须了解什么是网络安全&#xff01;&#xff0c;什么是黑客&#xff01;&#xff01; 1.无论网络、Web、移动、桌面、云等哪个领域&#xff0c;都有攻与防两面性&#xff0c;例如 Web 安全技术&#xff0c;既有 Web 渗透2.也有 Web 防…...

Dockerfile自定义容器

1、Dockerfile Dockerfile 是用于构建 Docker 镜像的文本文件&#xff0c;其中包含一系列的指令和配置&#xff0c;用于定义镜像的构建过程。通过 Dockerfile&#xff0c;你可以定义镜像的基础操作系统、依赖、环境设置、应用程序等信息&#xff0c;从而实现可复制、自动化的镜…...

(5)SpringMVC处理携带JSON格式(“key“:value)请求数据的Ajax请求

SpringMVC处理Ajax 参考文章数据交换的常见格式,如JSON格式和XML格式 请求参数的携带方式 浏览器发送到服务器的请求参数有namevalue&...(键值对)和{key:value,...}(json对象)两种格式 URL请求会将请求参数以键值对的格式拼接到请求地址后面,form表单的GET和POST请求会…...

【iOS】——仿写计算器

文章目录 一、实现思路二、实现方法三、判错处理 一、实现思路 先搭建好MVC框架&#xff0c;接着在各个模块中实现各自的任务。首先要创建好UI界面&#xff0c;接着根据UI界面的元素来与数据进行互动&#xff0c;其中创建UI界面需要用到Masonry布局。 二、实现方法 在calcu…...

公安机关警务vr综合实战模拟训练提高团队合作能力

公安出警VR虚拟仿真培训软件是VR公司利用VR虚拟现实和web3d开发技术&#xff0c;对警务执法过程中可能发生的各种场景进行还原、模拟、演练&#xff0c;结合数据分析&#xff0c;实施量化考核&#xff0c;提高学员的心理承压、应急处突、遇袭反应和临危处置综合能力。 公安出警…...

MySQL-1(12000字详解)

一&#xff1a;数据库的引入 数据库在我们以后工作中是一个非常常用的知识&#xff0c;数据库用来存储数据&#xff0c;但是有些同学可能就会疑惑了&#xff0c;存储数据用文件就可以了&#xff0c;为什么还要弄个数据库呢&#xff1f; 文件保存数据有以下几个缺点&#xff1…...

voc数据集格式与yolo数据集格式的区别及相互转化

Pascal VOC数据集是目标检测领域最常用的标准数据集之一&#xff0c;几乎所有检测方向的论文都会给出其在VOC数据集上训练并评测的效果。VOC数据集包含的信息非常全&#xff0c;它不仅被拿来做目标检测&#xff0c;也可以拿来做分割等任务&#xff0c;因此除了目标检测所需的文…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...