GPT的优势和GPT缺点
GPT,即Generative Pre-trained Transformer,是一种基于人工智能技术的自然语言处理模型。它采用了深度学习算法,可以通过大量的文本数据来学习自然语言的规律,并能够生成流畅、准确的语句。下面我们将探讨GPT技术的优势。
首先,GPT技术具有极高的语言生成能力。GPT技术是目前最为先进的自然语言处理模型之一,拥有数亿个参数和多层的神经网络结构,可以处理超过数十亿级别的语料库数据。GPT可以根据给定的上下文信息生成质量很高的语句,甚至可以生成完整的文章、故事等长文本,和人类写作风格非常接近。
其次,GPT技术可以通过自我训练不断提升语言生成能力。GPT采用自监督学习的方式进行预训练,可以利用大量的文本语料库进行训练,进一步提高模型的自然语言理解和生成能力。随着训练的深入,GPT技术的语言生成质量也将不断提升。
最后,GPT技术具有广泛的应用场景。在智能客服、智能翻译、自动摘要、文本生成等领域,GPT技术都能够发挥巨大的作用。例如,可以通过GPT技术实现智能客服的自动回复、智能翻译的精确翻译等应用,提高工作效率,减少人力成本。
总之,GPT技术是一项非常有用的人工智能技术,它具有极高的语言生成能力和自我训练能力,广泛应用于自然语言处理领域,并且在未来还将拥有更加广泛的应用前景。
根据[1]和[2]提供的知识,GPT模型的缺点主要有以下几点:
只能实现单向文本生成:与一些双向解码器(如BERT)不同,GPT采用单向的解码器,只能利用前面的上下文信息进行生成,无法利用后面的文本信息,因此其生成文本的连贯性和逻辑性可能不如双向解码器。
生成文本存在一定的随机性:由于GPT采用了基于随机梯度下降等优化方法,并且在fine-tuning过程中设置了一些随机性,因此每次生成的文本都可能存在一定的随机性和差异性。
对长文本的处理可能存在问题:虽然GPT能够生成较为流畅、准确的短文本,但处理长文本时可能出现一些问题。例如,当要生成的文本长度较长时,GPT需要不断地重复计算,造成效率低下的问题。
参数较多,训练成本高:GPT模型包含了数亿个参数,需要大量的计算资源和时间来进行训练,因此其训练成本相对较高。同时,模型的参数较多也可能导致模型复杂度较高,增加了模型的解释难度。
总之,GPT模型作为一种先进的自然语言处理模型,虽然具有很多优点,但其仍然存在一些缺点,需要在实际应用中综合考虑。
————————————————
版权声明:本文为CSDN博主「payjs1」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/payjs1/article/details/129949135
课程推荐《GPT引领前沿与应用突破之GPT4科研实践技术与AI绘图》
相关文章:
GPT的优势和GPT缺点
GPT,即Generative Pre-trained Transformer,是一种基于人工智能技术的自然语言处理模型。它采用了深度学习算法,可以通过大量的文本数据来学习自然语言的规律,并能够生成流畅、准确的语句。下面我们将探讨GPT技术的优势。 首先&a…...
微信小程序开发缺少中间证书问题(腾讯云、阿里云等做服务器)
项目使用nginx做负载均衡后,不再采用原来直接用jar包的方式直接开启对应端口,所以需要重新从云服务器上下载证书,写入到Nginx读取的证书路径上即可。...
动态代理初步了解
准备案例 需求 模拟某企业用户管理业务,需包含用户登录,用户删除,用户查询功能,并要统计每个功能的耗时。 分析与实现 定义一个UserService表示用户业务接口,规定必须完成用户登录,用户删除,…...
QT国际化
引入 在代码里面写中文就很low,运行时多语言切换是客户端程序都应该具备的。 qt国际化其实就是qt中字符串的字符集编码的设置。当然这个设置不是简单的选择一下什么语言就好,这个需要编程人员来处理的。 通常对于非拉丁字符(主要指latin1字符…...
微信小程序button按钮去除边框去除背景色
button边框 去除button边框 在button上添加plain“true”在css中添加button.avatar-wrapper {background: none}用于去除button背景色在css中添加button.avatar-wrapper[plain]{ border:0 }用于去除button边框...
Neo4j深度学习
Neo4j的简介 Neo4j是用Java实现的开源NoSQL图数据库。从2003年开始开发,2007年正式发布第一版,其源码托管于GitHtb。Neo4j作为图数据库中的代表产品,已经在众多的行业项目中进行了应用,如:网络管理、软件分析、组织和…...
【数据结构C/C++】链式存储与顺序存储结构栈
文章目录 链式存储结构顺序存储结构 下面这篇文章是我大二时候写的比较详细的实现过程,再这篇文章我也会再一次比较简单的再次简述一下链式与顺序存储结构的实现方式。 链式存储结构与顺序存储结构详解 这里我就不使用C再一次实现这两个栈了,有兴趣的也可…...
【数据库系统概论】数据定义之基本表的定义/创建、修改和删除
前言 🚩定义/创建基本表语法示例 修改基本表语法示例 删除基本表语法示例 感谢 💖 前言 🚩 SQL支持数据库系统的三级模式结构,其模式、外模式和内模式中的基本对象有表、视图和索引,因此,SQL的数据定义功能…...
面试算法22:链表中环的入口节点(1)
题目 如果一个链表中包含环,那么应该如何找出环的入口节点?从链表的头节点开始顺着next指针方向进入环的第1个节点为环的入口节点。 例如,在如图4.3所示的链表中,环的入口节点是节点3。 分析 第1步:确认是否包含环…...
蓝桥杯---第二讲---二分与前缀和
文章目录 前言Ⅰ. 数的范围0x00 算法思路0x00 代码书写 Ⅱ. 数的三次方根0x00 算法思路0x01代码书写 Ⅲ. 前缀和0x00 算法思路0x01 代码书写 Ⅳ. 子矩阵的和0x00 算法思路0x01 代码书写 Ⅴ. 机器人跳跃问题0x00 算法思路0x01 代码书写 Ⅵ. 四平方和0x00 算法思路0x01 代码书写 …...
d3dx9_39.dll如何修复?最新修复d3dx9_39.dll方法分享
大家好!今天我要和大家分享的主题是“d3dx9_39.dll丢失的修复方法”。我们都知道,在使用电脑的过程中,经常会遇到各种问题,而其中最常见的就是文件丢失。d3dx9_39.dll就是其中一个常见的丢失文件。那么,如何修复这个丢…...
阿里云轻量应用服务器月流量限制说明(部分套餐不限流量)
阿里云轻量应用服务器部分套餐限制月流量,轻量应用服务器按照套餐售卖,有的套餐限制月流量,有的不限制流量。像阿里云轻量2核2G3M带宽轻量服务器一年108元和轻量2核4G4M带宽一年297.98元12个月,这两款是不限制月流量的。阿里云百科…...
项目设计:YOLOv5目标检测+机构光相机(intel d455和d435i)测距
1.介绍 1.1 Intel D455 Intel D455 是一款基于结构光(Structured Light)技术的深度相机。 与ToF相机不同,结构光相机使用另一种方法来获取物体的深度信息。它通过投射可视光谱中的红外结构光图案,然后从被拍摄物体表面反射回来…...
WPF中DataContext的绑定技巧
先看效果: 上面的绑定值都是我们自定义的属性,有了以上的提示,那么我们可以轻松绑定字段,再也不用担心错误了。附带源码。 目录 1.建立mvvm项目 2.cs后台使用DataContext绑定 3.xaml前台使用DataContext绑定 4.xaml前台使用Da…...
【Spring MVC研究】MVC原理:DispatcherServlet的初始化,初始化好等于MVC准备好
文章目录 1. EnableWebMVC 开启 MVC 功能2. 初始化自定义的 MVC 组件2.1. 初始化过程2.2. 如何分析复杂的 Spring 组件注册 3. 容器启动后会初始化 DispatcherServlet4. DispatcherServlet 初始化过程总结5. 资料参考 把DispatcherServlet 准备好意味着服务器已经可以处理请求了…...
Kafka的分布式架构与高可用性
导语 一开始我们就说过Kafka是一款开源的高吞吐、分布式的消息队列系统,那么今天我们就来说下它的分布式架构和高可用性以及双/多中心部署。 Kafka 体系架构简介 以下是 Kafka 的软件架构,整个 Kafka 体系结构由 Producer、Consumer、Broker、ZooKeepe…...
Spring Cloud学习笔记【分布式请求链路跟踪-Sleuth】
文章目录 Spring Cloud Sleuth概述概述主要功能:Sleuth中的术语和相关概念官网 zipkin配置下载运行zipkin下载zipkin运行 demo配置服务提供者 lf-userpom.xmlapplication.ymlUserController 服务调用者 lf-authpom.xmlapplication.ymlAuthController 测试 Spring Cl…...
Java开发中的操作日志详解(InsCode AI 创作助手)
Java开发中的操作日志详解 一、操作日志的作用 故障排除和调试: 操作日志可以记录应用程序的各种活动,包括错误、异常、警告和信息性消息。这有助于开发人员快速定位和解决问题。性能分析: 通过记录关键操作和性能指标,操作日志…...
FutureTask和CompletableFuture的模拟使用
模拟了查询耗时操作,并使用FutureTask和CompletableFuture分别获取计算结果,统计执行时长 package org.alllearn.futurtask;import com.google.common.base.Stopwatch; import com.google.common.collect.Lists; import lombok.AllArgsConstructor; imp…...
Redis作为缓存,mysql的数据如何与redis进行同步?
Redis作为缓存,mysql的数据如何与redis进行同步? 一定要设置前提,先介绍业务背景 延时双删 双写一致性:当修改了数据库的数据也要同时更新缓存的数据,缓存和数据库的数据要保持一致 读操作:缓存命中,直接返回;缓存未…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
