Elasticsearch:使用 huggingface 模型的 NLP 文本搜索
本博文使用由 Elastic 博客 title 组成的简单数据集在 Elasticsearch 中实现 NLP 文本搜索。你将为博客文档建立索引,并使用摄取管道生成文本嵌入。 通过使用 NLP 模型,你将使用自然语言在博客文档上查询文档。
安装
Elasticsearch 及 Kibana
如果你还没有安装好自己的 Elasticsearch 及 Kibana,请参考如下的链接来进行安装:
-
如何在 Linux,MacOS 及 Windows 上进行安装 Elasticsearch
-
Kibana:如何在 Linux,MacOS 及 Windows 上安装 Elastic 栈中的 Kibana
在安装的时候,我们可以选择 Elastic Stack 8.x 的安装指南来进行安装。在本博文中,我将使用最新的 Elastic Stack 8.10 来进行展示。
在安装 Elasticsearch 的过程中,我们需要记下如下的信息:

由于我们将要使用到 eland 来上传模型。这是一个收费的功能。我们需要启动试用功能:

Python 安装包
在本演示中,我们将使用 Python 来进行展示。我们需要安装访问 Elasticsearch 相应的安装包 elasticsearch:
python3 -m pip install -qU sentence-transformers eland elasticsearch transformers
我们将使用 Jupyter Notebook 来进行展示。
$ pwd
/Users/liuxg/python/elser
$ jupyter notebook
准备数据
我们在项目的根目录下,创建如下的一个数据文件: data.json:
data.json
[{"title":"Pulp Fiction","runtime":"154","plot":"The lives of two mob hitmen, a boxer, a gangster and his wife, and a pair of diner bandits intertwine in four tales of violence and redemption.","keyScene":"John Travolta is forced to inject adrenaline directly into Uma Thurman's heart after she overdoses on heroin.","genre":"Crime, Drama","released":"1994"},{"title":"The Dark Knight","runtime":"152","plot":"When the menace known as the Joker wreaks havoc and chaos on the people of Gotham, Batman must accept one of the greatest psychological and physical tests of his ability to fight injustice.","keyScene":"Batman angrily responds 'I’m Batman' when asked who he is by Falcone.","genre":"Action, Crime, Drama, Thriller","released":"2008"},{"title":"Fight Club","runtime":"139","plot":"An insomniac office worker and a devil-may-care soapmaker form an underground fight club that evolves into something much, much more.","keyScene":"Brad Pitt explains the rules of Fight Club to Edward Norton. The first rule of Fight Club is: You do not talk about Fight Club. The second rule of Fight Club is: You do not talk about Fight Club.","genre":"Drama","released":"1999"},{"title":"Inception","runtime":"148","plot":"A thief who steals corporate secrets through the use of dream-sharing technology is given the inverse task of planting an idea into thed of a C.E.O.","keyScene":"Leonardo DiCaprio explains the concept of inception to Ellen Page by using a child's spinning top.","genre":"Action, Adventure, Sci-Fi, Thriller","released":"2010"},{"title":"The Matrix","runtime":"136","plot":"A computer hacker learns from mysterious rebels about the true nature of his reality and his role in the war against its controllers.","keyScene":"Red pill or blue pill? Morpheus offers Neo a choice between the red pill, which will allow him to learn the truth about the Matrix, or the blue pill, which will return him to his former life.","genre":"Action, Sci-Fi","released":"1999"},{"title":"The Shawshank Redemption","runtime":"142","plot":"Two imprisoned men bond over a number of years, finding solace and eventual redemption through acts of common decency.","keyScene":"Andy Dufresne escapes from Shawshank prison by crawling through a sewer pipe.","genre":"Drama","released":"1994"},{"title":"Goodfellas","runtime":"146","plot":"The story of Henry Hill and his life in the mob, covering his relationship with his wife Karen Hill and his mob partners Jimmy Conway and Tommy DeVito in the Italian-American crime syndicate.","keyScene":"Joe Pesci's character Tommy DeVito shoots young Spider in the foot for not getting him a drink.","genre":"Biography, Crime, Drama","released":"1990"},{"title":"Se7en","runtime":"127","plot":"Two detectives, a rookie and a veteran, hunt a serial killer who uses the seven deadly sins as his motives.","keyScene":"Brad Pitt's character David Mills shoots John Doe after he reveals that he murdered Mills' wife.","genre":"Crime, Drama, Mystery, Thriller","released":"1995"},{"title":"The Silence of the Lambs","runtime":"118","plot":"A young F.B.I. cadet must receive the help of an incarcerated and manipulative cannibal killer to help catch another serial killer, a madman who skins his victims.","keyScene":"Hannibal Lecter explains to Clarice Starling that he ate a census taker's liver with some fava beans and a nice Chianti.","genre":"Crime, Drama, Thriller","released":"1991"},{"title":"The Godfather","runtime":"175","plot":"An organized crime dynasty's aging patriarch transfers control of his clandestine empire to his reluctant son.","keyScene":"James Caan's character Sonny Corleone is shot to death at a toll booth by a number of machine gun toting enemies.","genre":"Crime, Drama","released":"1972"},{"title":"The Departed","runtime":"151","plot":"An undercover cop and a mole in the police attempt to identify each other while infiltrating an Irish gang in South Boston.","keyScene":"Leonardo DiCaprio's character Billy Costigan is shot to death by Matt Damon's character Colin Sullivan.","genre":"Crime, Drama, Thriller","released":"2006"},{"title":"The Usual Suspects","runtime":"106","plot":"A sole survivor tells of the twisty events leading up to a horrific gun battle on a boat, which began when five criminals met at a seemingly random police lineup.","keyScene":"Kevin Spacey's character Verbal Kint is revealed to be the mastermind behind the crime, when his limp disappears as he walks away from the police station.","genre":"Crime, Mystery, Thriller","released":"1995"}
]
$ pwd
/Users/liuxg/python/elser
$ ls
Multilingual semantic search.ipynb
NLP text search using hugging face transformer model.ipynb
Semantic search - ELSER.ipynb
data.json
创建应用并演示
import modules
import pandas as pd, json
from elasticsearch import Elasticsearch
from getpass import getpass
from urllib.request import urlopen
部署 NLP 模型
我们将使用 eland 工具来安装 text_embedding 模型。 对于我们的模型,我们使用 all-MiniLM-L6-v2 将搜索文本转换为密集向量。
该模型会将你的搜索查询转换为向量,该向量将用于对 Elasticsearch 中存储的文档集进行搜索。
我们在 terminal 中打入如下的命令:
eland_import_hub_model --url https://elastic:vXDWYtL*my3vnKY9zCfL@localhost:9200 \--hub-model-id sentence-transformers/all-MiniLM-L6-v2 \--task-type text_embedding \--ca-cert /Users/liuxg/elastic/elasticsearch-8.10.0/config/certs/http_ca.crt \--start
请注意:
- 我们需要根据自己的部署来替换上面的 elastic 超级用户的密码
- 我们需要根据自己的 Elasticsearch 集群的部署来替换上面的 Elasticsearch 访问地址
- 我们需要根据自己的部署的证书来替换上面的证书路径

我们回到 Kibana 的界面:




连接到 Elasticsearch
我们创建一个客户端连接:
ELASTCSEARCH_CERT_PATH = "/Users/liuxg/elastic/elasticsearch-8.10.0/config/certs/http_ca.crt"es = Elasticsearch( ['https://localhost:9200'],basic_auth = ('elastic', 'vXDWYtL*my3vnKY9zCfL'),ca_certs = ELASTCSEARCH_CERT_PATH,verify_certs = True)
print(es.info())

创建 ingest pipeline
我们需要创建一个文本嵌入提取管道来生成 title 字段的向量(文本)嵌入。
下面的管道定义了一个用于 NLP 模型的 inference 处理器。
# ingest pipeline definition
PIPELINE_ID="vectorize_blogs"es.ingest.put_pipeline(id=PIPELINE_ID, processors=[{"inference": {"model_id": "sentence-transformers__all-minilm-l6-v2","target_field": "text_embedding","field_map": {"title": "text_field"}}}])

创建带有映射的索引
现在,在索引文档之前,我们将创建一个具有正确映射的 Elasticsearch 索引。 我们添加 text_embedding 以包含 model_id 和 Predicted_value 来存储嵌入。
# define index name
INDEX_NAME="blogs"# flag to check if index has to be deleted before creating
SHOULD_DELETE_INDEX=True# define index mapping
INDEX_MAPPING = {"properties": {"title": {"type": "text","fields": {"keyword": {"type": "keyword","ignore_above": 256}}},"text_embedding": {"properties": {"is_truncated": {"type": "boolean"},"model_id": {"type": "text","fields": {"keyword": {"type": "keyword","ignore_above": 256}}},"predicted_value": {"type": "dense_vector","dims": 384,"index": True,"similarity": "l2_norm"}}}}}INDEX_SETTINGS = {"index": {"number_of_replicas": "1","number_of_shards": "1","default_pipeline": PIPELINE_ID}
}# check if we want to delete index before creating the index
if(SHOULD_DELETE_INDEX):if es.indices.exists(index=INDEX_NAME):print("Deleting existing %s" % INDEX_NAME)client.options(ignore_status=[400, 404]).indices.delete(index=INDEX_NAME)print("Creating index %s" % INDEX_NAME)
es.options(ignore_status=[400,404]).indices.create(index=INDEX_NAME, mappings=INDEX_MAPPING, settings=INDEX_SETTINGS)

摄入数据到 Elasticsearch
让我们使用摄取管道对示例博客数据进行索引。
注意:在我们开始索引之前,请确保你已启动训练模型部署。
from elasticsearch import helpers# Load data into a JSON object
with open('data.json') as f:data_json = json.load(f)print(data_json)# Prepare the documents to be indexed
documents = []
for doc in data_json:documents.append({"_index": "blogs","_source": doc,})# Use helpers.bulk to index
helpers.bulk(client, documents)

我们可以回到 Kibana 的界面查看被写入的文档:
GET blogs/_search

查询数据集
下一步是运行查询来搜索相关博客。 该示例查询使用我们上传到 Elasticsearch Sentence-transformers__all-minilm-l6-v2 的模型来搜索 “model_text”: “scientific fiction”。
该过程是一个查询,尽管它内部包含两个任务。 首先,查询将使用 NLP 模型为您的搜索文本生成一个向量,然后传递该向量以在数据集上进行搜索。
结果,输出显示按照与搜索查询的接近度排序的查询文档列表。
INDEX_NAME="blogs"source_fields = [ "id", "title"]query = {"field": "text_embedding.predicted_value","k": 10,"num_candidates": 50,"query_vector_builder": {"text_embedding": {"model_id": "sentence-transformers__all-minilm-l6-v2","model_text": "scientific fiction"}}
}response = es.search(index=INDEX_NAME,fields=source_fields,knn=query,source=False)results = pd.json_normalize(json.loads(json.dumps(response.body['hits']['hits'])))# shows the result
results[['_id', '_score', 'fields.title']]
上面命令显示的结果为:

你可尝试另外的一个搜索,比如:dark knight

最终的 jupyter 文件可以在地址下载。
相关文章:
Elasticsearch:使用 huggingface 模型的 NLP 文本搜索
本博文使用由 Elastic 博客 title 组成的简单数据集在 Elasticsearch 中实现 NLP 文本搜索。你将为博客文档建立索引,并使用摄取管道生成文本嵌入。 通过使用 NLP 模型,你将使用自然语言在博客文档上查询文档。 安装 Elasticsearch 及 Kibana 如果你还没…...
论文解析——异构多芯粒神经网络加速器
作者 朱郭益, 马胜,张春元, 王波(国防科技大学计算机学院) 摘要 随着神经网络技术的快速发展, 出于安全性等方面考虑, 大量边缘计算设备被应用于智能计算领域。首先,设计了可应用于边缘计算的异构多芯粒神经网络加速器其基本结构…...
MyBatisPlus(十六)逻辑删除
说明 实际生产中的数据,一般不采用物理删除,而采用逻辑删除,也就是将一条记录的状态改为已删除。 逻辑删除,本质上是更新操作。 MyBatis Plus 框架,提供了逻辑删除功能。在配置了逻辑删除后,增删改查和统…...
基于黏菌优化的BP神经网络(分类应用) - 附代码
基于黏菌优化的BP神经网络(分类应用) - 附代码 文章目录 基于黏菌优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.黏菌优化BP神经网络3.1 BP神经网络参数设置3.2 黏菌算法应用 4.测试结果:5.M…...
C语言基础语法复习08-位域bit-fields
在c2011 iso文档中,位域与struct、union是一起定义的: Structure and union specifiers Syntaxstruct-or-union-specifier:struct-or-union identifier opt { struct-declaration-list }struct-or-union identifierstruct-or-union:structunionstruct-d…...
3.2.OpenCV技能树--二值图像处理--图像腐蚀与膨胀
文章目录 1.文章内容来源2.图像膨胀处理2.1.图像膨胀原理简介2.2.图像膨胀核心代码2.3.图像膨胀效果展示 3.图像腐蚀处理3.1.图像腐蚀原理简介3.2.图像腐蚀核心代码3.3.图像腐蚀效果展示 4.易错点总结与反思 1.文章内容来源 1.题目来源:https://edu.csdn.net/skill/practice/o…...
基于FPGA的数字时钟系统设计
在FPGA的学习中,数字时钟是一个比较基础的实验案例,通过该实验可以更好的锻炼初学者的框架设计能力以及逻辑思维能力,从而打好坚实的基本功,接下来就开始我们的学习吧! 1.数码管介绍 数码管通俗理解就是将8个LED(包含…...
linux centos Python + Selenium+Chrome自动化测试环境搭建?
在 CentOS 系统上搭建 Python Selenium Chrome 自动化测试环境,需要执行以下步骤: 1、安装 Python CentOS 7 自带的 Python 版本较老,建议使用 EPEL 库或源码安装 Python 3。例如,使用 EPEL 库安装 Python 3: sud…...
mysql面试题20:有哪些合适的分布式主键方案
该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:有哪些合适的分布式主键方案? UUID:UUID通常是由一个二进制的128位整数表示,可以保证全局的唯一性。在Java中,可以通过UUID类生成一个UUID。例…...
git的基础操作
https://blog.csdn.net/a18307096730/article/details/124586216?spm1001.2014.3001.5502 1:使用场景 SVN,如果服务器里面的东西坏掉了,那么就全线崩盘了。 1:基本配置 git config --global user.name “luka” (自己的名字就行) git co…...
lua 中文字符的判断简介
一般在工作中会遇到中文字符的判断、截断、打码等需求,之前一直没有总结,虽然网上资料也多,今天在这里简单的总结一下。 1 .UTF-8简单描述 UTF-8 是 Unicode 的实现方式之一,其对应关系(编码规则)如下表所…...
SSM-XML整合
SSM-XML整合 核心配置文件 maven坐标 <dependencies><!--数据库驱动--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.27</version></dependency><!--数据…...
线性代数小例子
这样做有什么问题呢: A 2 A > A ( A − E ) 0 > A E A 0 A^2 A > A(A - E) 0> A E \quad A 0 A2A>A(A−E)0>AEA0 上述做法是错误的,这是因为两个矩阵的乘积结果为0,并不能说明这两个矩阵就是0,即上述…...
ASP.NET Core 开发 Web API
2. Web Api 的创建与Http类型的介绍 2.1 ASP.Net Core Web API项目的创建 1.创建ASP.NET Core Web API项目 从“文件”菜单中选择“新建”“项目”。 在搜索框中输入“Web API”。 选择“ASP.NET Core Web API”模板,然后选择“下一步”。 在“配置新项目”对话框中…...
QImage函数setAlphaChannel
最近使用QImage的函数setAlphaChannel时遇到了一个坑,花了不少时间才弄清楚:在使用这个函数后,图像格式都会变成QImage::Format_ARGB32_Premultiplied。 先看下setAlphaChannel在帮助文档的说明: void QImage::setAlphaChannel(…...
区块链、隐私计算、联邦学习、人工智能的关联
目录 前言 1.区块链 2.隐私计算 3.联邦学习(隐私计算技术) 4.区块链和联邦学习 5.区块链和人工智能 展望 参考文献 前言 区块链公开透明,但也需要隐私,人工智能强大,但也需要限制。当前我们需要的是一个在保证…...
Unity可视化Shader工具ASE介绍——4、ASE的自定义模板使用
大家好,我是阿赵。 继续介绍Unity可视化Shader编辑工具ASE。之前的文章介绍了在ASE里面可以选择不同的Shader类型。这一篇来继续探讨一下,这些Shader类型究竟是什么。 一、所谓的Shader类型是什么 选择不同的Shader类型,会出现不同的选项…...
FastAPI学习-22.response 异常处理 HTTPException
前言 某些情况下,需要向客户端返回错误提示。 这里所谓的客户端包括前端浏览器、其他应用程序、物联网设备等。 需要向客户端返回错误提示的场景主要如下: 客户端没有执行操作的权限客户端没有访问资源的权限客户端要访问的项目不存在等等 … 遇到这些…...
75.颜色分类
原地排序:空间复杂度为1 class Solution { public:void sortColors(vector<int>& nums) {if(0){//法一:单指针两个遍历int nnums.size();int ptr0;for(int i0;i<n;i){if(nums[i]0){swap(nums[i],nums[ptr]);ptr;}}for(int iptr;i<n;i){…...
浅谈分散式存储项目MEMO
Memo本质上是互联网项目,应用了一些区块链技术而已,或者叫做包了层区块链皮的互联网项目。 最开始对标Filcoin,后来发现Filcoin也有问题,分布式存储解决方案并不完美,抑或者是自己团队的研发能力无法与IPFS团队PK&…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...

