增强LLM:使用搜索引擎缓解大模型幻觉问题
论文题目:FRESHLLMS:REFRESHING LARGE LANGUAGE MODELS WITH SEARCH ENGINE AUGMENTATION
论文地址:https://arxiv.org/pdf/2310.03214.pdf
论文由Google、University of Massachusetts Amherst、OpenAI联合发布。
大部分大语言模型只会训练一次,不会被频繁的更新,训练用到的知识会慢慢过时,所以它无法适应变化的世界。论文作者提出了动态问答的基准测试,称为FRESHQA,并且提出了一种简单的解决问题的方法,FRESHPROMPT。
FRESHQA收集的问题根据难度可以分别单跳和多跳两种,两种问题的区别在于是否需要多级的推理。而根据答案的性质问题可以分为1.永远不变;2.缓慢变化;3.快速变化;4.虚假前提。

测试集的评估模式也分别两种:1.RELAXED,它仅衡量主要答案是否正确; 2.STRICT,它衡量响应中的所有声明是否是事实和最新的(即没有幻觉)。
FRESHPROMPT 是一种简单而有效的方法,对于给定的问题,它通过提取所有最新和相关的信息(包括来自搜索用户也询问的相关问题的知识)来利用搜索引擎,并使用少样本上下文学习教模型推理检索到的证据并找出正确的答案。
搜索引擎返回内容如下图,serper api返回内容类似。

FRESHPROMPT的具体做法如下:
使用搜索引擎得到相关实时信息,并处理成统一的结构化信息:
1.对问题q进行逐字记录检索搜索引擎,并保留所有检索信息。
(搜索引擎使用google的serper api;搜索返回字段如下:relatedSearches,organic,searchParameters,knowledgeGraph,answerBox,peopleAlsoAsk,根据问题不同返回字段不同。)
2.将所有信息进行提取,生成内容为结构化的统一格式,证据E = {(s,d,t,x,h)的列表。
(符号表示如下:s:source, d:date, t:title, x:snippet, h:highlight)
3.对E的列表按时间进行排序。
为了帮助模型“理解”任务和期望输出,我们在输入提示的开头提供了输入输出示例的少量演示。每个演示都显示了模型示例问题和问题检索到的证据列表,然后对证据进行思维链推理,以找出最相关和最新的答案。最终的提问构造如下图。其中demonstrations表示输入输出示例的演示。

实验结果

表中主要展示不同的模型和实验配置(消融实验)在FRESHQA数据集上的表现(STRICT)。
大模型选取了gpt3.5和gpt4。
google search表示直接使用google进行回复,选取结果为answer box(如有) 或者 第一个结果的 text snippet。
PPL.AI是一个将LLM和搜索引擎相结合以生成对用户查询的有用响应的答案引擎。
self-ask是一种使用情景学习的方法,教LLM将每个问题分解成更简单的子问题,然后通过谷歌搜索来回答。
对于FRESHPROMPT的设置,搜索答案的选取不同(snippets only、answer box relevant info)、搜索结果的排序不同(search order、time order、random order)、搜索结果数量不同(1、5、15,默认为10)、输入输出示例描述demonstrations数量不同、是否添加premise check(让模型进行错误前提检查)。
结论
1.FRESHPROMPT可以带来巨大的效果提升,因为外部实时数据的加入,使模型可以回答动态问题。
2.FRESHPROMPT比其他的搜索增强的方法效果好,对比方法为PPL.AI和+self-ask方法。3.premise check方法对与错误前提问题有效,但是同时也会降低有效前提问题的回答准确性。总体结果为弊大于利。
4.更全面更新的相关证据的效果会更好。time order>search order>>random order;搜索内容更加全面(不仅仅是text snippets)也会有利回复。
5.增加检索到的证据的数量进一步提高了 FRESHPROMPT效果,但要考虑大模型的token length limit。
6.冗长的演示(demonstrations)改进了复杂的问题,但也增加了幻觉。
相关文章:
增强LLM:使用搜索引擎缓解大模型幻觉问题
论文题目:FRESHLLMS:REFRESHING LARGE LANGUAGE MODELS WITH SEARCH ENGINE AUGMENTATION 论文地址:https://arxiv.org/pdf/2310.03214.pdf 论文由Google、University of Massachusetts Amherst、OpenAI联合发布。 大部分大语言模型只会训练一次&#…...
WPF向Avalonia迁移(一、一些通用迁移项目)
通用变更 WPF:Visibility 其他参考文档 WPF: <TextBlock Visibility"Visible"/><TextBlock Visibility"Collapsed"/><TextBlock Visibility"Hidden"/>Avalonia : <TextBlock IsVisib…...
lua学习笔记
单行注释: 多行注释: 命名: Lua不支持下划线大写字母,比如:_ABC 但支持:_abc 关键字: 全局变量: 直接变量名 内容就是全局 局部变量: 加上local即可 nil࿱…...
修改 ModelScope 默认缓存路径
修改 ModelScope 默认缓存路径 设置 MODELSCOPE_CACHE 和 MODELSCOPE_MODULES_CACHE 两个环境变量。 export MODELSCOPE_CACHE<your_favourite_path>/hub export MODELSCOPE_MODULES_CACHE<your_favourite_path>/modelscope_modules完结!...
【ES实战】索引别名的使用说明
索引别名 文章目录 索引别名带有过滤器的别名RoutingWrite Index REST单一添加一个别名示例: 索引创建是增加别名删除别名检索现有别名示例: 索引别名可以通过API的方式进行操作一个索引别名可以映射到一个或一个以上的索引索引名和索引别名不能重复,在集群中都是唯…...
QT信号与槽机制 和 常用控件介绍
QT信号与槽机制 1、信号(signal): 所谓信号槽 (观察者模式)信号本质是事件。信号展现方式就是函数。当某一个事件发生之后,则发出一个信号(signal). 2、槽(slot): 就是对信号响应的函数,槽就是一个函数。槽函数与普通函数区别槽函数可以与一个信号关联&…...
【css-banner图片自适应】
<picture><source media"(max-width: 480px)" srcset"图片地址"><source media"(min-width: 481px)" srcset"图片地址"><img src"图片地址" id"homebanner"></picture>img{height:…...
【k8s管理操作】
k8s管理操作 一、k8s管理操作1.陈述式资源管理2.声明式资源管理 二、k8s基础信息常看(命令)增删改查项目的生命周期:创建-->发布-->更新-->回滚-->删除 headless clusterIP 无头模式 金丝雀发布(Canary Release&#…...
【java基础学习】之DOS命令
#java基础学习 1.常用的DOS命令: dir:列出当前目录下的文件以及文件夹 md: 创建目录 rd:删除目录cd:进入指定目录 cd.. :退回到上级目录 cd\ : 退回到根目录 del:删除文件 exit:退出dos命令行 1.dir:列出当前目录下的文件以及文件夹 2.md: 创建目录 …...
学习记录——StyleGAN2+SA-UNet
SA-UNet for Retinal Vessel improvment using StyleGAN2 作者提出了一种改进视网膜图像分割的方法,通过创建图像及其相应的分割地图来实现。作者的解决方案包括使用DRIVE数据集1对StylGAN2进行训练,并使用目前在分割DRIVE图像方面取得最先进结果的SA-UNet模型对新合成的图像…...
JVM222
文章目录 JVM222运行时数据区的内部结构线程程序计数器(PC寄存器)虚拟机栈 JVM222 运行时数据区的内部结构 概述 本节主要讲的是运行时数据区,也就是下图这部分,它是在类加载器加载完成后的阶段,如下图: …...
C语言 指针
含义 从根本上看,指针是一个值为内存地址的变量(或数据对象)。指针变量的值是地址。 要创建指针变量,先要声明指针变量的类型 作用 1.实现复杂的数据结构,例如数组、链表、队列和堆栈等; 2.能方便地表…...
YOLOv8血细胞检测(7):小目标大目标一网打尽,轻骨干重Neck的轻量级GFPN | 阿里ICLR2022 GiraffeDet
💡💡💡本文改进:小目标大目标一网打尽GFPN,提升大小目标检测性能 GFPN | 亲测在血细胞检测项目中涨点,map@0.5 从原始0.895提升至0.904 收录专栏: 💡💡💡YOLO医学影像检测:http://t.csdnimg.cn/N4zBP ✨✨✨实战医学影像检测项目,通过创新点验证涨点可…...
广度优先(BFS)(例子:迷宫)
广度优先搜索算法(BFS)是一种用于图形和树数据结构的搜索算法。该算法从根节点开始搜索,然后依次访问每个相邻节点。在搜索过程中,每个节点都标记为已访问,以避免重复访问。BFS算法适用于寻找最短路径的问题࿰…...
【安卓源码】安卓Watchdog 机制
在Android系统中,也设计了一个软件层面Watchdog,用于保护一些重要的系统服务,比如:AMS、WMS、PMS等,由于以上核心服务运行在system_server进程里面,所以当以上服务出现异常时,通常会将system_se…...
inscode连接不上gpu,持续8小时,为了数据不丢失续费了6小时,我只想知道什么时候可以连接
并且给我相应的补偿...
QT位置相关函数
Qt(Qt Framework)是一个流行的C应用程序开发框架,提供了丰富的位置相关函数和类,用于处理窗口、窗口小部件和图形的位置和几何操作。以下是一些常用的Qt位置相关函数和类: QPoint:QPoint类表示一个二维点的…...
vulnhub靶场 Kioptrix-level-1
简介: vulnhub是一个提供靶场环境的平台。而Kioptrix-level-1就是一个对新手比较友好的靶场。初学渗透的同学可以做做试试看,项目地址如下。 项目地址:Kioptrix: Level 1 (#1) ~ VulnHub 信息收集 查看本机IP,靶机跟kali都是使用…...
全网最细,真实企业性能测试落地实施,一文带你快速打通...
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、什么是性能测试…...
三十一、【进阶】B+树的演变过程
1、B树简单介绍 (1)介绍:B树也属于B树,是B树的变种 (2)特点:所有的数据都位于叶子节点上,叶子节点上的所有元素形成了一个单项链表 (3)图示: 2…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
