当前位置: 首页 > news >正文

【jvm--方法区】

文章目录

  • 1. 栈、堆、方法区的交互关系
  • 2. 方法区的内部结构
  • 3. 运行时常量池
  • 4. 方法区的演进细节
  • 5. 方法区的垃圾回收

在这里插入图片描述

1. 栈、堆、方法区的交互关系

在这里插入图片描述

方法区的基本理解

  • 方法区(Method Area)与 Java 堆一样,是各个线程共享的内存区域。
  • 方法区在 JVM 启动的时候被创建,并且它的实际的物理内存空间中和 Java 堆区一样都可以是不连续的。
  • 方法区的大小,跟堆空间一样,可以选择固定大小或者可扩展。
  • 方法区的大小决定了系统可以保存多少个类,如果系统定义了太多的类,导致方法区溢出,虚拟机同样会抛出内存溢出错误:java.lang.OutOfMemoryError: PermGen space 或者java.lang.OutOfMemoryError: Metaspace
    • 加载大量的第三方的 jar 包;Tomcat 部署的工程过多(30~50 个);大量动态的生成反射类
  • 关闭 JVM 就会释放这个区域的内存。

元空间不在虚拟机设置的内存中,而是使用本地内存

2. 方法区的内部结构

在这里插入图片描述
在这里插入图片描述

类型信息
对每个加载的类型(类 class、接口 interface、枚举 enum、注解 annotation),JVM 必须在方法区中存储以下类型信息:

  1. 这个类型的完整有效名称(全名=包名.类名)
  2. 这个类型直接父类的完整有效名(对于 interface 或是 java.lang.object,都没有父类)
  3. 这个类型的修饰符(public,abstract,final 的某个子集)
  4. 这个类型直接接口的一个有序列表

域(Field)信息
JVM 必须在方法区中保存类型的所有域的相关信息以及域的声明顺序。

域的相关信息包括:域名称、域类型、域修饰符(public,private,protected,static,final,volatile,transient 的某个子集)

方法(Method)信息

  1. 方法名称
  2. 方法的返回类型(或 void)
  3. 方法参数的数量和类型(按顺序)
  4. 方法的修饰符(public,private,protected,static,final,synchronized,native,abstract 的一个子集)
  5. 方法的字节码(bytecodes)、操作数栈大小、局部变量表大小(abstract 和 native 方法除外)
  6. 异常表(abstract 和 native 方法除外)
    • 每个异常处理的开始位置、结束位置、代码处理在程序计数器中的偏移地址、被捕获的异常类的常量池索引

静态变量关联在一起,随着类的加载而加载,他们成为类数据在逻辑上的一部分

全局常量(static final):
被声明为 final 的类变量的处理方法则不同,每个全局常量在编译的时候就会被分配了。

3. 运行时常量池

  • 方法区,内部包含了运行时常量池
  • 字节码文件,内部包含了常量池

一个有效的字节码文件中除了包含类的版本信息、字段、方法以及接口等描述符信息外,还包含一项信息就是常量池表(Constant Pool Table),包括各种字面量和对类型方法符号引用

为什么需要常量池?
一个 java 源文件中的类、接口,编译后产生一个字节码文件。而 Java 中的字节码需要数据支持,通常这种数据会很大以至于不能直接存到字节码里,换另一种方式,可以存到常量池,这个字节码包含了指向常量池的引用。在动态链接的时候会用到运行时常量池

常量池中有什么?
常量池内存储的数据类型包括:

  • 数量值
  • 字符串值
  • 类引用
  • 字段引用
  • 方法引用
    在这里插入图片描述
    常量池、可以看做是一张表,虚拟机指令根据这张常量表找到要执行的类名、方法名、参数类型、字面量等类型

运行时常量池

  • 运行时常量池(Runtime Constant Pool)是方法区的一部分。
  • 常量池表(Constant Pool Table)是 Class 文件的一部分,用于存放编译期生成的各种字面量与符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。
  • 运行时常量池,在加载类和接口到虚拟机后,就会创建对应的运行时常量池。
  • 运行时常量池中包含多种不同的常量,包括编译期就已经明确的数值字面量,也包括到运行期解析后才能够获得的方法或者字段引用。此时不再是常量池中的符号地址了,这里换为真实地址
  • 运行时常量池,相对于 Class 文件常量池的另一重要特征是:具备动态性
  • 当创建类或接口的运行时常量池时,如果构造运行时常量池所需的内存空间超过了方法区所能提供的最大值,则 JVM 会抛 OutOfMemoryError 异常。

方法区使用举例:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4. 方法区的演进细节

Hotspot 中方法区的变化: 在这里插入图片描述
在这里插入图片描述
为什么永久代要被元空间替代?:

  • 为永久代设置空间大小是很难确定的。在某些场景下,如果动态加载类过多,容易产生 Perm 区的 oom。比如某个实际 Web 工 程中,因为功能点比较多,在运行过程中,要不断动态加载很多类,经常出现致命错误。

    "Exception in thread 'dubbo client x.x connector' java.lang.OutOfMemoryError:PermGen space"
    

    而元空间和永久代之间最大的区别在于:元空间并不在虚拟机中,而是使用本地内存。 因此,默认情况下,元空间的大小仅受本地内存限制。

  • 对永久代进行调优是很困难的。

StringTable 为什么要调整位置?:
jdk7 中将 StringTable 放到了堆空间中。因为永久代的回收效率很低,在 full gc 的时候才会触发。而 full gc 是老年代的空间不足、永久代不足时才会触发。

这就导致 StringTable 回收效率不高。而我们开发中会有大量的字符串被创建,回收效率低,导致永久代内存不足。放到堆里,能及时回收内存。

静态变量存放在那里?:静态引用对应的对象实体始终都存在堆空间在这里插入图片描述

5. 方法区的垃圾回收

方法区的垃圾收集主要回收两部分内容:常量池中废弃的常量不再使用的类型

判定一个常量是否“废弃”还是相对简单,而要判定一个类型是否属于“不再被使用的类”的条件就比较苛刻了。需要同时满足下面三个条件:

  • 该类所有的实例都已经被回收,也就是 Java 堆中不存在该类及其任何派生子类的实例。
  • 加载该类的类加载器已经被回收,这个条件除非是经过精心设计的可替换类加载器的场景,如 OSGi、JSP 的重加载等,否则通常是很难达成的。
  • 该类对应的 java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

在大量使用反射、动态代理、CGLib 等字节码框架,动态生成 JSP 以及 OSGi 这类频繁自定义类加载器的场景中,通常都需要 Java 虚拟机具备类型卸载的能力,以保证不会对方法区造成过大的内存压力

总结*:
在这里插入图片描述

相关文章:

【jvm--方法区】

文章目录 1. 栈、堆、方法区的交互关系2. 方法区的内部结构3. 运行时常量池4. 方法区的演进细节5. 方法区的垃圾回收 1. 栈、堆、方法区的交互关系 方法区的基本理解: 方法区(Method Area)与 Java 堆一样,是各个线程共享的内存区…...

智慧楼宇3D数据可视化大屏交互展示实现了楼宇能源的高效、智能、精细化管控

智慧园区是指将物联网、大数据、人工智能等技术应用于传统建筑和基础设施,以实现对园区的全面监控、管理和服务的一种建筑形态。通过将园区内设备、设施和系统联网,实现数据的传输、共享和响应,提高园区的管理效率和运营效益,为居…...

算法题:摆动序列(贪心算法解决序列问题)

这道题是一道贪心算法题,如果前两个数是递增,则后面要递减,如果不符合则往后遍历,直到找到符合的。(完整题目附在了最后) 代码如下: class Solution(object):def wiggleMaxLength(self, nums):…...

接口自动化测试yaml+requests+allure技术,你学会了吗?

前言 接口自动化测试是在软件开发过程中常用的一种测试方式,通过对接口进行自动化测试,可以提高测试效率、降低测试成本。在接口自动化测试中,yaml、requests和allure三种技术经常被使用。 一、什么是接口自动化测试 接口自动化测试是指通…...

android 获取局域网其他设备ip

Android 通过读取本地Arp表获取当前局域网内其他设备信息_手机查看arp-CSDN博客...

angular中使用 ngModel 自定义组件

要创建一个自定义的 Angular 组件,并使用 ngModel 进行双向数据绑定,您可以按照以下步骤操作: 创建自定义组件:首先,使用 Angular CLI 或手动创建一个新的组件。在组件的模板中,添加一个输入元素或其他适合…...

kubernetes pod日志查看用户创建

目录 1.创建用户 1.1证书创建 1.2创建用户 1.3允许用户登陆 1.4切换用户 1.5删除用户 2.RBAC 1.创建用户 1.1证书创建 进入证书目录 # cd /etc/kubernetes/pki创建key # openssl genrsa -out user1.key 2048 Generating RSA private key, 2048 bit long modulus .....…...

HTML5+CSSday4综合案例二——banner效果

bannerCSS展示图&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"wi…...

关于红包雨功能的探索

【高并发优化手段】基于Springboot项目 【红包雨功能的】环境部署&#xff08;弹性伸缩、负载均衡、Redis读写分离、云服务器部署&#xff09; jemeter压测【2万用户每秒5次请求在30秒内处理完请求】 【红包雨压测】提供2万用户30秒内5次请求的并发服务支持 使用工厂模式、策略…...

【已解决】Python打包文件执行报错:ModuleNotFoundError: No module named ‘pymssql‘

【已解决】Python打包文件执行报错&#xff1a;ModuleNotFoundError: No module named pymssql 1、问题2、原因3、解决 1、问题 今天打包一个 tkinter pymssql 的项目的时候&#xff0c;打包过程很顺利&#xff0c;但是打开软件的时候&#xff0c;报错 ModuleNotFoundError: …...

华为云云耀云服务器L实例评测|测试CentOS的网络配置和访问控制

目录 引言 1 理解几个基础概念 2 配置VPC、子网以及路由表 3 配置安全组策略和访问控制规则 3.1 安全组策略和访问控制简介 3.2 配置安全组策略 3.3 安全组的最佳实践 结论 引言 在云计算时代&#xff0c;网络配置和访问控制是确保您的CentOS虚拟机在云环境中安全运行的…...

CSP模拟51联测13 B.狗

CSP模拟51联测13 B.狗 文章目录 CSP模拟51联测13 B.狗题目大意题目描述输入格式输出格式样例样例 1inputoutput 思路 题目大意 题目描述 小G养了很多狗。 小G一共有 n n n\times n nn 条狗&#xff0c;在一个矩阵上。小G想让狗狗交朋友&#xff0c;一条狗狗最多只能交一个…...

GEO生信数据挖掘(七)差异基因分析

上节&#xff0c;我们使用结核病基因数据&#xff0c;做了一个数据预处理的实操案例。例子中结核类型&#xff0c;包括结核&#xff0c;潜隐进展&#xff0c;对照和潜隐&#xff0c;四个类别。本节延续上个数据&#xff0c;进行了差异分析。 差异分析 计算差异指标step12 加载…...

JAVA-SpringBoot入门Demo用IDEA建立helloworld

使用编辑器IDEA做SpringBoot项目最近几年比较红红&#xff0c;作为JAVA语言翻身的技术&#xff0c;用户量激增。由于java平台原来的占有率&#xff0c;相比net core在某些方面更有优势。 我把本次我下载完成后Maven项目的过程记录下来了&#xff0c;仅供参考&#xff01; 安装J…...

Unity布料系统Cloth

Unity布料系统Cloth 介绍布料系统Cloth(Unity组件)组件上的一些属性布料系统的使用布料约束Select面板Paint面板Gradient Tool面板 布料碰撞布料碰撞碰撞适用 介绍 布料系统我第一次用是做人物的裙摆自然飘动&#xff0c;当时我用的是UnityChan这个unity官方自带的插件做的裙摆…...

漏电继电器 LLJ-630F φ100 导轨安装 分体式结构 LLJ-630H(S) AC

系列型号&#xff1a; LLJ-10F(S)漏电继电器LLJ-15F(S)漏电继电器LLJ-16F(S)漏电继电器 LLJ-25F(S)漏电继电器LLJ-30F(S)漏电继电器LLJ-32F(S)漏电继电器 LLJ-60F(S)漏电继电器LLJ-63F(S)漏电继电器LLJ-80F(S)漏电继电器 LLJ-100F(S)漏电继电器LLJ-120F(S)漏电继电器LLJ-125F(S…...

数据结构和算法(10):B-树

B-树&#xff1a;大数据 现代电子计算机发展速度空前&#xff0c;就存储能力而言&#xff0c;情况似乎也是如此&#xff1a;如今容量以TB计的硬盘也不过数百元&#xff0c;内存的常规容量也已达到GB量级。 然而从实际应用的需求来看&#xff0c;问题规模的膨胀却远远快于存储能…...

VR会议:远程带看功能,专为沉浸式云洽谈而生

随着科技的不断发展&#xff0c;VR技术已经成为当今市场上较为热门的新型技术之一了&#xff0c;而VR会议远程带看功能&#xff0c;更是为用户提供更加真实、自然的沉浸式体验。 随着5G技术的发展&#xff0c;传统的图文、视频这种展示形式已经无法满足消费者对信息真实性的需求…...

实验室管理系统LIMS

在数字化浪潮中&#xff0c;越来越多的企业开始有数字化转型的意识。对于实验室而言&#xff0c;数字化转型是指运用新一代数字技术&#xff0c;促进实验室业务、生产、研发、管理、服务、供应链等方面的转型与升级&#xff0c;实现实验室业务“人、机、料、法、环”的多维度发…...

开源ERP和CRM套件Dolibarr

什么是 Dolibarr &#xff1f; Dolibarr ERP & CRM 是一个现代软件包&#xff0c;用于管理您组织的活动&#xff08;联系人、供应商、发票、订单、库存、议程…&#xff09;。它是开源软件&#xff08;用 PHP 编写&#xff09;&#xff0c;专为中小型企业、基金会和自由职业…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

node.js的初步学习

那什么是node.js呢&#xff1f; 和JavaScript又是什么关系呢&#xff1f; node.js 提供了 JavaScript的运行环境。当JavaScript作为后端开发语言来说&#xff0c; 需要在node.js的环境上进行当JavaScript作为前端开发语言来说&#xff0c;需要在浏览器的环境上进行 Node.js 可…...

【51单片机】4. 模块化编程与LCD1602Debug

1. 什么是模块化编程 传统编程会将所有函数放在main.c中&#xff0c;如果使用的模块多&#xff0c;一个文件内会有很多代码&#xff0c;不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里&#xff0c;在.h文件里提供外部可调用函数声明&#xff0c;其他.c文…...

Easy Excel

Easy Excel 一、依赖引入二、基本使用1. 定义实体类&#xff08;导入/导出共用&#xff09;2. 写 Excel3. 读 Excel 三、常用注解说明&#xff08;完整列表&#xff09;四、进阶&#xff1a;自定义转换器&#xff08;Converter&#xff09; 其它自定义转换器没生效 Easy Excel在…...

[特殊字符] Spring Boot底层原理深度解析与高级面试题精析

一、Spring Boot底层原理详解 Spring Boot的核心设计哲学是约定优于配置和自动装配&#xff0c;通过简化传统Spring应用的初始化和配置流程&#xff0c;显著提升开发效率。其底层原理可拆解为以下核心机制&#xff1a; 自动装配&#xff08;Auto-Configuration&#xff09; 核…...

Spring AI中使用ChatMemory实现会话记忆功能

文章目录 1、需求2、ChatMemory中消息的存储位置3、实现步骤1、引入依赖2、配置Spring AI3、配置chatmemory4、java层传递conversaionId 4、验证5、完整代码6、参考文档 1、需求 我们知道大型语言模型 &#xff08;LLM&#xff09; 是无状态的&#xff0c;这就意味着他们不会保…...

Ubantu-Docker配置最新镜像源250605

尝试其他镜像加速器 阿里云镜像加速器&#xff1a;登录阿里云&#xff0c;进入容器镜像服务获取专属加速器地址。毫秒镜像&#xff1a;https://docker.1ms.run。DockerHub镜像加速器&#xff1a;https://docker.xuanyuan.me。Docker Hub 镜像加速服务&#xff1a;https://dock…...