当前位置: 首页 > news >正文

[GXYCTF 2019]Ping Ping Ping题目解析

本题考察的内容是rce绕过,本事过滤的东西不算多也算是比较好绕过

基础看到这种先ping一下试试看

输入127.0.0.1看看有啥东西

有回显说明可以接着往下做

借用RCE漏洞详解及绕过总结(全面)-CSDN博客这个大佬整理的rce绕过

;A;B无论真假,A与B都执行
&A&B无论真假,A与B都执行
&&A&&BA为真时才执行B,否则只执行A
|A|B显示B的执行结果
||A||BA为假时才执行B,否则只执行A

这时已知127.0.0.1为真就可选取以上123种进行尝试2 3发现都无回显只有1有回显

第一次输入127.0.0.1;cat flag.php试试看

给予回显说fxck your space!

这就说明大概是存在过滤,需要去筛选

观察我们写的代码大概有可能空格就被过滤了,这时候需要找空格的替代品

%20(space)、%09(tab)、$IFS$9、${IFS}$9、 {IFS}、IFS这一些都是

我用了$IFS$9做替换给的提示说

fxck your flag!

说明flag被过滤了

我们看看index.php中有什么东西

回显后查看源代码有以下内容,主要是告诉你哪些被过滤了

也就印证了以上我们的猜想

最后就只需要将flag用别的方式代替即可

我们常用的方法就是拼接

比如a=fl;b=ag这种

但是一般我们都将后面的内容先写出来也就是b=ag;a=flag这样做的目的是为了绕过字符串匹配

最后的组成就是127.0.0.1;b=ag;a=fl;cat$IFS$9$a$b.php

相关文章:

[GXYCTF 2019]Ping Ping Ping题目解析

本题考察的内容是rce绕过,本事过滤的东西不算多也算是比较好绕过 基础看到这种先ping一下试试看 输入127.0.0.1看看有啥东西 有回显说明可以接着往下做 借用RCE漏洞详解及绕过总结(全面)-CSDN博客这个大佬整理的rce绕过 ;A;B无论真假,A与B都执行&…...

HTTP协议的请求协议和响应协议的组成,HTTP常见的状态信息

HTTP协议 什么是协议 协议实际上是某些人或组织提前制定好的一套规范,大家只要都按照这个规范来就可以做到沟通无障碍 HTTP协议是W3C(万维网联盟组织)制定的一种超文本传输通信协议(发送消息的模板和数据的格式),除了传送字符串,还有声音、视频、图片等流媒体等超文本信息 …...

【LeetCode】剑指 Offer Ⅱ 第6章:栈(6道题) -- Java Version

题库链接:https://leetcode.cn/problem-list/e8X3pBZi/ 类型题目解决方案栈的应用剑指 Offer II 036. 后缀表达式模拟 栈 ⭐剑指 Offer II 037. 小行星碰撞分类讨论 栈 ⭐单调栈剑指 Offer II 038. 每日温度单调栈 ⭐剑指 Offer II 039. 直方图最大矩形面积单调栈…...

vue3的element-plus的el-dialog的样式修改无效问题

问题描述 想要修改element-plus的对话框el-dialog中的样式,发现在页面style的scoped属性下,使用:deep深入选择器进行修改是无效的。(vue2下深度选择器是有效的) //无效 :deep(.el-dialog){background-color: transparent; }解决…...

归纳所猜半结论推出完整结论:CF1592F1

https://www.luogu.com.cn/problem/CF1592F1 场上猜了个结论,感觉只会操作1。然后被样例1hack了。然后就猜如果 ( n , m ) (n,m) (n,m) 为1则翻转4操作,被#14hack了。然后就猜4操作只会进行一次,然后就不知道怎么做下去了。 上面猜的结论都…...

WPFdatagrid结合comboBox

在WPF的DataGrid中希望结合使用ComboBox下拉框,达到下拉选择绑定的效果,在实现的过程中,遇到了一些奇怪的问题,因此记录下来。 网上能够查询到的解决方案: 总共有三种ItemSource常见绑定实现方式: 1.ItemS…...

Markdown类图之继承、实现、关联、依赖、组合、聚合总结(十五)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...

@MultipartConfig注解

前言: 在学习Javaweb的Servlet文件上传和下载的过程中,我们会遇到一个特殊的注解---MultipartConfig。 MultipartConfig的适用情况: 1.文件上传: 当您的应用程序需要接收用户上传的文件时,可以在相应的 Servlet 上使用 Multipart…...

Python并发编程简介

1、Python对并发编程的支持 多线程: threading, 利用CPU和IO可以同时执行的原理,让CPU不会干巴巴等待IO完成多进程: multiprocessing, 利用多核CPU的能力,真正的并行执行任务异步IO: asyncio,在单线程利用CPU和IO同时执行的原理,实现函数异步执行使用Lo…...

WebSocket介绍及部署

WebSocket是一种在单个TCP连接上进行全双工通信的协议,其设计的目的是在Web浏览器和Web服务器之间进行实时通信(实时Web)。 WebSocket协议的优点包括: 1. 更高效的网络利用率:与HTTP相比,WebSocket的握手…...

自动求导,计算图示意图及pytorch实现

pytorch实现 x1 torch.tensor(3.0, requires_gradTrue) y1 torch.tensor(2.0, requires_gradTrue) a x1 ** 2 b 3 * a c b * y1 c.backward() print(x1.grad) print(y1.grad) print(x1.grad 6 * x1 * y1) print(y1.grad 3 * (x1 ** 2))输出为: tensor(36.) …...

睿伴科创上线了

Robotutor睿伴,一个专业的青少儿编程科创教育品牌和科创服务平台。 Robotutor睿伴拥有一个超过5年的青少儿编程科创教育团队,积累了丰富的课程研发,教学服务和赛事辅导经验。并和上海多所知名高校、上海市计算机学会、上海青少年科学社等开展…...

域名抢注和域名注册

随着互联网的发展,域名已经成为了企业和个人在网络上展示自己的重要标志。如何获得一段好记、易拼写、有意义的域名,是很多人都面临的问题。本文将介绍域名抢注和域名注册的相关内容,并推荐ym.qqmu.com这个可靠的域名注册平台。 一、什么是域…...

【20】c++设计模式——>组合模式

组合模式定义 C组合模式(Composite Pattern)是一种结构型设计模式,他允许将对象组合成树形结构来表示“部分-整体”的层次结构;在组合模式中有两种基本类型的对象:叶子对象和组合对象,叶子对象时没有子对象…...

Jetpack:004-如何使用文本组件

文章目录 1. 概念介绍2. 使用方法2.1 通用参数2.2 专用参数 3. 示例代码4. 内容总结 我们在上一章回中介绍了Jetpack组件在布局中的对齐方式,本章回中主要介绍文 本组件的使用方法。闲话休提,让我们一起Talk Android Jetpack吧 1. 概念介绍 我们在本章…...

JVM(八股文)

目录 一、JVM简介 二、JVM中的内存区域划分 三、JVM加载 1.类加载 1.1 加载 1.2 验证 1.3 准备 1.4 解析 1.5 初始 1.6 总结 2.双亲委派模型 四、JVM 垃圾回收(GC) 1.确认垃圾 1.1 引用计数 1.2 可达性分析(Java 采用的方案&a…...

C#WPF标记扩展应用实例

本文介绍C#WPF标记扩展应用实例 一、标记扩展 标记扩展是一个 XAML 语言概念。 用于提供特性语法的值时,大括号({ 和 })表示标记扩展用法。 此用法指示 XAML 处理不要像通常那样将特性值视为文本字符串或者可转换为字符串的值。就是类似于值用变量的意思。 WPF 应用编程中…...

四维曲面如何画?matlab

clc; clear all [theta,phi]meshgrid(linspace(0,pi,50),linspace(0,2*pi,50)); zcos(theta); xsin(theta).*cos(phi); ysin(theta).*sin(phi); f-1*((x.*y).2(y.*z).2(z.*x).^2); surf(sin(theta).*cos(phi).*f,sin(theta).*sin(phi).*f,cos(theta).*f,f) 结果...

软件培训测试高级工程师多测师肖sir__html之作业11

html之作业 案例1&#xff1a; 截图&#xff1a; 代码&#xff1a; <!DOCTYPE html> <html><head><meta charset"UTF-8"><title>表单</title></head><body><table style"background-color:red" bo…...

详解一典型的反激式开关电源方案

理解一个单端反激式开关电源方案&#xff1a; 1、抛出问题&#xff1a; 如图&#xff0c;在某系统方案上看到下图所示的单端反激式开关电源方案。 2、解析问题&#xff1a; 2.1、乍一看&#xff1a; 典型的AC-DC电路&#xff0c;考虑了安规及过压过流保护&#xff0c;如&am…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

pycharm 设置环境出错

pycharm 设置环境出错 pycharm 新建项目&#xff0c;设置虚拟环境&#xff0c;出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...

微服务通信安全:深入解析mTLS的原理与实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言&#xff1a;微服务时代的通信安全挑战 随着云原生和微服务架构的普及&#xff0c;服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...