TensorFlow入门(十二、分布式训练)
1、按照并行方式来分
①模型并行
假设我们有n张GPU,不同的GPU被输入相同的数据,运行同一个模型的不同部分。
在实际训练过程中,如果遇到模型非常庞大,一张GPU不够存储的情况,可以使用模型并行的分布式训练,把模型的不同部分交给不同的GPU负责。这种方式存在一定的弊端:①这种方式需要不同的GPU之间通信,从而产生较大的通信成本。②由于每个GPU上运行的模型部分之间存在一定的依赖,导致规模伸缩性差。
②数据并行
假设我们有n张GPU,不同的GPU被输入不同的数据,运行相同的完整的模型。
如果遇到一张GPU就能够存下一个模型的情况,可以采用数据并行的方式,这种方式的各部分独立,伸缩性好。
2、按照更新方式来分
采用数据并行方式时,由于每个GPU负责一部分数据,涉及到如何更新参数的问题,因此分为同步更新和异步更新两种方式。
①同步更新
所有GPU计算完每一个batch(也就是每批次数据)后,再统一计算新权值,等所有GPU同步新值后,再开始进行下一轮计算。
同步更新的好处是loss的下降比较稳定,但是这个的坏处也很明显,这种方式有等待,处理的速度取决于最慢的那个GPU计算的时间。
②异步更新
每个GPU计算完梯度后,无需等待其他GPU更新,立即更新整体权值并同步。
异步更新的好处是计算速度快,计算资源能得到充分利用,但是缺点是loss的下降不稳定,抖动大。
3、按照算法来分
①Parameter Sever算法
原理:假设我们有n张GPU,GPU0将数据分成n份分到各张GPU上,每张GPU负责自己那一批次数据的训练,得到梯度后,返回给GPU0上做累计,得到更新的权重参数后,再分发给各张GPU。
②Ring AllReduce算法
原理:假设我们有n张GPU,它们以环形相连,每张GPU都有一个左邻和一个右邻,每张GPU向各自的右邻发送数据,并从它的左邻接近数据。循环n-1次完成梯度积累,再循环n-1次做参数同步。整个算法过程分两个步骤进行:首先是scatter_reduce,然后是allgather。在scatter-reduce,然后是allgather。在scatter-reduce步骤中,GPU将交换数据,使每个GPU可得到最终结果的一个块。在allgather步骤中,gpu将交换这些块,以便所有gpu得到完整的最终结果。
tf.distribute API:
它是TensorFlow在多GPU、多机器上进行分布式训练用的API。使用这个API,可以在尽可能少改动代码的同时,分布式训练模型。
它的核心API是tf.distribute.Strategy,只需简单几行代码就可以实现单机多GPU,多机多GPU等情况的分布式训练。
它的主要优点:
①简单易用,开箱即用,高性能
②便于各种分布式Strategy切换
③支持Custom Training Loop、Estimator、Keras
④支持eager excution
tf.distribute.Strategy目前主要有四个Strategy:
①MirroredStrategy,即镜像策略
MirroredStrategy用于单机多GPU、数据并行、同步更新的情况,它会在每个GPU上保存一份模型副本,模型中的每个变量都镜像在所有副本中。这些变量一起形成一个名为MirroredVariable的概念变量。通过apply相同的更新,这些变量保持彼此同步。
创建一个镜像策略的方法如下:
mirrored_strategy = tf.distribute.MirroredStrategy()
也可以自定义用哪些devices,如:
mirrored_strategy = tf.distribute.MirroredStrategy(devices=["/gpu:0","/gpu:1"])
训练过程中,镜像策略用了高效的All-reduce算法来实现设备之间变量的传递更新。默认情况下它使用NVIDA NCCL (tf.distribute.NcclAllReduce)作为all-reduce算法的实现。通过apply相同的更新,这些变量保持彼此同步。
官方也提供了其他的一些all-reduce实现方法,可供选择,如:
tf.distribute.CrossDeviceOps
tf.distribute.HierarchicalCopyAllReduce
tf.distribute.ReductionToOneDevice
②CentralStorageStrategy,即中心存储策略
使用该策略时,参数被统一存在CPU里,然后复制到所有GPU上,它的优点是通过这种方式,GPU是负载均衡的,但一般情况下CPU和GPU通信代价比较大。
创建一个中心存储策略的方法如下:
central_storage_strategy = tf.distribute.experimental.CentralStorageStratygy()
③MultiWorkerMirroredStrategy,即多端镜像策略
该API和MirroredStrategy类似,它是其多机多GPU分布式训练的版本。
创建一个多端镜像策略的方法如下:
multiworker_strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
④ParameterServerStrategy,即参数服务策略
简称PS策略,由于计算速度慢和负载不均衡,很少使用这种策略。
创建一个参数服务策略的方法如下:
ps_strategy = tf.distribute.experimental.ParameterServerStrategy()
示例代码如下:
import tensorflow as tf#设置总训练轮数
num_epochs = 5
#设置每轮训练的批大小
batch_size_per_replica = 64
#设置学习率,指定了梯度下降算法中用于更新权重的步长大小
learning_rate = 0.001#创建镜像策略
strategy = tf.distribute.MirroredStrategy()
#通过同步更新时副本的数量计算出本机的GPU设备数量
print("Number of devices: %d"% strategy.num_replicas_in_sync)
#通过副本数量乘以每轮训练的批大小,得出训练总数据量的大小
batch_size = batch_size_per_replica * strategy.num_replicas_in_sync#函数将输入的图片调整为224x224大小,再将像素值除以255进行归一化,同时返回标签信息
def resize(image,label):image = tf.image.resize(image,[224,224])/255.0return image,label#载入数据集并预处理
dataset,_ = tf.keras.datasets.cifar10.load_data()
images,labels = dataset
dataset = tf.data.Dataset.from_tensor_slices((images, labels))
dataset = dataset.map(resize).shuffle(1024).batch(batch_size)#在strategy.scope下创建模型和优化器
with strategy.scope():#载入了MobileNetV2模型,该模型在ImageNet上预先训练好了,并可以在分类问题上进行微调model = tf.keras.applications.MobileNetV2()#设置训练时用的优化器、损失函数和准确率评测标准model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate = learning_rate),loss = tf.keras.losses.sparse_categorical_crossentropy,metrics = [tf.keras.metrics.sparse_categorical_accuracy])#执行训练过程
model.fit(dataset,epochs = num_epochs)
对于CIFAR-10数据集下载过慢的问题,可以手动去官网下载
https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gzhttps://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz下载完成后将其放在如下图的路径下,并将数据集文件改名为cifar-10-batches-py.tar.gz并解压
相关文章:

TensorFlow入门(十二、分布式训练)
1、按照并行方式来分 ①模型并行 假设我们有n张GPU,不同的GPU被输入相同的数据,运行同一个模型的不同部分。 在实际训练过程中,如果遇到模型非常庞大,一张GPU不够存储的情况,可以使用模型并行的分布式训练,把模型的不同部分交给不同的GPU负责。这种方式存在一定的弊端:①这种方…...

在React中,什么是props(属性)?如何向组件传递props?
聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 欢迎来到前端入门之旅!感兴趣的可以订阅本专栏哦!这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…...

java 每种设计模式的作用,与应用场景
文章目录 前言java 每种设计模式的作用,与应用场景 前言 如果您觉得有用的话,记得给博主点个赞,评论,收藏一键三连啊,写作不易啊^ _ ^。 而且听说点赞的人每天的运气都不会太差,实在白嫖的话࿰…...

Appium问题及解决:打开Appium可视化界面,点击搜索按钮,提示inspectormoved
打开Appium可视化界面,点击搜索按钮,提示inspectorMoved,那么如何解决这个问题呢? 搜索了之后发现,由于高版本Appium(从1.22.0开始)的服务和元素查看器分离,所以还需要下载Appium In…...

android 不同进程之间数据传递
1.handler android.os.Message是定义一个Messge包含必要的描述和属性数据,并且此对象可以被发送给android.os.Handler处理。属性字段:arg1、arg2、what、obj、replyTo等;其中arg1和arg2是用来存放整型数据的;what是用来保存消息标…...

一个完整的初学者指南Django-part1
源自:https://simpleisbetterthancomplex.com/series/2017/09/04/a-complete-beginners-guide-to-django-part-1.html 一个完整的初学者指南Django - 第1部分 介绍 今天我将开始一个关于 Django 基础知识的新系列教程。这是一个完整的 Django 初学者指南。材料分为七…...

SpringBoot和Hibernate——如何提高数据库性能
摘要:本文由葡萄城技术团队发布。转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具、解决方案和服务,赋能开发者。 前言 在软件开发领域,性能是重中之重。无论您是构建小型 Web 应用程序还是大型企业系统…...

五分钟Win11安装安卓(Android)子系统
十分钟,完成win11安装安卓子系统 Step1、地区设置为美国 Wini 进入设置页面,选择时间和语言-语言和区域- 区域-美国 Step2 安装 Windows Subsystem for Android™ with Amazon Appstore 访问如下连接,install即可 安卓子系统 Step3 安…...

基于LSTM-Adaboost的电力负荷预测的MATLAB程序
微❤关注“电气仔推送”获得资料(专享优惠) 主要内容: LSTM-AdaBoost负荷预测模型先通过 AdaBoost集成算法串行训练多个基学习器并计算每个基学习 器的权重系数,接着将各个基学习器的预测结果进行线性组合,生成最终的预测结果。代码中的LST…...

GLTF纹理贴图工具让模型更逼真
1、如何制作逼真的三维模型? 要使三维模型看起来更加逼真,可以考虑以下几个方面: 高质量纹理:使用高分辨率的纹理贴图可以增强模型的细节和真实感。选择适合模型的高质量纹理图像,并确保纹理映射到模型上的UV坐标正确…...

HttpServletResponse对象
1.介绍 在Servlet API中,定义了一个HttpServletResponse接口,它继承自ServletResponse接口,专门用来封装HTTP响应消息。由于HTTP响应消息分为状态行、响应消息头、消息体三部分,因此,在HttpServletResponse接口中定义…...

在SSL中进行交叉熵学习的步骤
在半监督学习(Semi-Supervised Learning,SSL)中进行交叉熵学习通常包括以下步骤: 准备标注数据和未标注数据 首先,你需要准备带有标签的标注数据和没有标签的未标注数据。标注数据通常是在任务中手动标记的ÿ…...

10月TIOBE榜Java跌出前三!要不我转回C#吧
前言 Java又要完了,又要没了,你没看错,10月编程语言榜单出炉,Java跌出前三,并且即将被C#超越,很多资深人士预测只需两个月,Java就会跌出前五。 看到这样的文章,作为一名Java工程师我…...

优盘中毒了怎么办?资料如何恢复
在现代社会中,优盘成为我们日常生活与工作中必备的便携式存储设备。然而,正是由于其便携性,优盘也成为病毒感染的主要目标之一。本篇文章将帮助读者了解如何应对优盘中毒的情况,以及如何恢复因病毒感染丢失的资料。 ▶优盘为什么…...

如何查看端口占用(windows,linux,mac)
如何查看端口占用,各平台 一、背景 如何查看端口占用?网上很多,但大多直接丢出命令,没有任何解释关于如何查看命令的输出 所谓 “查端口占用”,即查看某个端口是否被某个程序占用,如果有,被哪…...

Photoshop与Web技术完美融合,Web版Photoshop已正式登场
通过WebAssembly Emscripten、Web Components Lit、Service Workers Workbox以及对新的Web API的支持,Chrome和Adobe之间的合作使得将Photoshop桌面应用程序引入Web成为了一项重大的里程碑。现在,您可以在浏览器上使用高度复杂和图形密集的软件&#…...

易点易动:提升企业固定资产管理效率的完美解决方案
在现代商业环境中,企业的固定资产管理是一项关键任务。高效的固定资产管理可以帮助企业降低成本、提高生产力,并确保资产的最佳利用。然而,传统的资产管理方法常常繁琐、低效,导致信息不准确、流程混乱。为了解决这一问题…...

SRE实战:如何低成本推进风险治理?稳定性与架构优化的3个策略
一分钟精华速览 SRE 团队每天面临着不可控的各类风险和重复发生的琐事,故障时疲于奔命忙于救火。作为技术管理者,你一直担心这些琐事会像滚雪球一样,越来越多地、无止尽地消耗你的团队,进而思考如何系统性地枚举、掌控这些风险&a…...

APK大小缩小65%,内存减少70%:如何优化Android App
APK大小缩小65%,内存减少70%:如何优化Android App 我们一直在努力为我们的Android应用程序构建MVP产品。在开发MVP产品后,我们发现需要进行应用程序优化以提高性能。经过分析,我们发现了以下可以改进的应用…...

传统工厂如何搭建蒸汽流量远程无线抄表系统?
一、应用背景 2021年国务院政府工作报告中指出,扎实做好碳达峰、碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构,特别是近期煤炭价格上涨导致蒸汽价格大幅上涨,节能减排显得更加重要…...

睿趣科技:抖音店铺怎么取名受欢迎
抖音作为国内最大的短视频平台,其商业价值不容忽视。许多商家和创作者都在抖音上开设了自己的店铺,而一个富有创意和吸引力的店铺名字,往往能带来更多的客流量。那么,如何为抖音店铺取个好名字呢?以下是一些有用的建议。 明确定位…...

面试经典 150 题 22 —(数组 / 字符串)— 28. 找出字符串中第一个匹配项的下标
28. 找出字符串中第一个匹配项的下标 方法一 class Solution { public:int strStr(string haystack, string needle) {if(haystack.find(needle) string::npos){return -1;}return haystack.find(needle);} };方法二 class Solution { public:int strStr(string haystack, s…...

儿童产品亚马逊CPC认证审核不通过的原因解析
一、亚马逊CPC认证审核不通过的原因 CPC认证是亚马逊针对卖家销售儿童用品的一个认证,如果提交CPC证书到亚马逊,亚马逊审核一直不通过,我们可以从几个方面入手来查下什么原因,是资料本身的原因?是否提供的资料合规&…...

项目_数据可视化| 折线图.散点图.随机漫步
安装matplotlib 在正式开始编写程序之前,需要先安装pip、matplotlib模块,苹果系统的安装问题在之前的文章中有相关介绍内容,如果pycharm运行模块报错,可以再次检查是否版本兼容问题。 绘制折线图 调用subplot(&#x…...

Android 项目增加 res配置
main.res.srcDirs "src/main/res_test" build->android->sourceSets...

MySQL数据库的MVCC详解
在MySQL的事务隔离锁机制中,MVCC是一个非常重要的概念,学会MVCC可以更好地理解MySQL如何实现各种隔离级别。 首先,大概地介绍一下mysql的事务隔离级别: 1、读未提交(Read Uncommited):指的是&…...

AI:10-基于TensorFlow的玉米病害识别
玉米是世界上最重要的粮食作物之一,然而,玉米病害对其产量和质量造成了严重威胁。传统的病害识别方法通常依赖于人工观察和经验判断,效率低下且易受主观因素影响。近年来,基于深度学习的图像识别技术在农业领域取得了显著进展,为玉米病害的快速、准确识别提供了新的解决方…...

vue3前端开发系列 - electron开发桌面程序(2023-10月最新版)
文章目录 1. 说明2. 创建项目3. 创建文件夹electron3.1 编写脚本electron.js3.2 编写脚本proload.js 4. 修改package.json4.1 删除type4.2 修改scripts4.3 完整的配置如下 5. 修改App.vue6. 修改vite.config.ts7. 启动8. 打包安装9. 项目公开地址 1. 说明 本次安装使用的环境版…...

前端uniapp生成海报并保存相册
uiapp插件 目录 图片qrcode.vue源码完整版封装源码qrcodeSwiper.vue最后 图片 qrcode.vue源码完整版 <template><view class"qrcode"><div class"qrcode_swiper SourceHanSansSC-Normal"><!-- <cc-scroolCard :dataInfo"dat…...

0基础学习VR全景平台篇 第104篇:720全景后期软件安装
上课!全体起立~ 大家好,欢迎观看蛙色官方系列全景摄影课程! 摄影进入数码时代,后期软件继承“暗房工艺”,成为摄影师表达内在情感的必备工具。 首先说明,全景摄影与平面摄影的一个显著的区别是全景图片需…...