【计算机网络】第三章课后习题答案
习题目录:
【3-01】数据链路(即逻辑链路)与链路(即物理链路)有何区别?"链路接通了"与"数据链路接通了"的区别何在?
【3-02】数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点。
【3-03】网络适配器的作用是什么?网络适配器工作在哪一层?
【3-04】数据链路层的三个基本问题(封装成帧、透明传输和差错检测)为什么都必须加以解决?
【3-05】如果在数据链路层不进行封装成帧,会发生什么问题?
【3-06】 PPP 协议的主要特点是什么?为什么 PPP 不使用帧的编号? PPP 适用于什么情况?为什么 PPP 协议不能使数据链路层实现可靠传输?
【3-07】要发送的数据为1101011011。采用 CRC 的生成多项式是 P ( X )= X + X +1。试求应添加在数据后面的余数。若要发送的数据在传输过程中最后一个1变成了0,即变成了1101011010,问接收端能否发现?若要发送的数据在传输过程中最后两个1都变成了0,即变成了1101011000,问接收端能否发现?采用 CRC 检验后,数据链路层的传输是否就变成了可靠的传输?
【3-08】要发送的数据为101110。采用 CRC 的生成多项式是 P ( X )= X +1。试求应添加在数据后面的余数。
【3-09】一个 PPP 帧的数据部分(用十六进制写出)是7D5EFE277D5D7D5D657D5E。试问真正的数据是什么(用十六进制写出)?
【3-10】 PPP 协议使用同步传输技术传送比特串0110111111111100。试问经过零比特填充后变成怎样的比特串?若接收端收到的 PPP 帧的数据部分是0001110111110111110110,试问删除发送端加入的零比特后会变成怎样的比特串?
【3-11】试分别讨论以下各种情况在什么条件下是透明传输,在什么条件下不是透明传输。(提示:请弄清什么是"透明传输",然后考虑能否满足其条件。)(1)普通的电话通信。(2)互联网提供的电子邮件服务。
【3-12】 PPP 协议的工作状态有哪几种?当用户要使用 PPP 协议和 ISP 建立连接进行通信时,需要建立哪几种连接?每一种连接解决什么问题?
【3-13】局域网的主要特点是什么?为什么局域网采用广播通信方方式而广域网不采用呢?
【3-14】常用的局域网的网络拓扑有有哪些种类?现在最流行的是哪种结构构?为什么早期的以太网选择总线拓扑结构而不使用星形拓扑结构,但现在却改为使用用星形拓扑结构呢?
【3-15】什么叫作传统以太网?以太网有哪两个主要标准?
【3-16】数据率为10 Mbit / s 的以太网在物理媒体上的码元传输速率(即码元/秒)是多少?
【3-17】为什么 LLC 子层的标准已制定出来了但现在却很少使用?
【3-18】试说明10BASE- T 中的"10"" BASE “和” T "所代表的意思。
【3-19】以太网使用的 CSMA / CD 协议是以争用方式接入到共享信道的,这与传统的时分复用 TDM 相比有何优缺点?
【3-20】假定1 km 长的 CSMA / CCD 网络的数据率为1 Gbits 。设信信号在网络上的传播速率为200000 km ' s 。求能够使用此协议的的最短帧长。
【3-21】什么叫作比特时间?使用这种时间间单位有什么好处?100比特时间是多少微微秒?
【3-22】假定在使用 CSMACD 协协议的10 Mbit ' s 以太网中某个站古在发送数据时检测到碰撞,执行退避算法时选择了随机数 rr =100。试问这个站需要等待多长时间后才能再次发送数据?如果是100Mbbits的以太网呢?
3-23编辑
【3-24】假定站点 A 和 B 在同一个10 Mbit / s 以太网网段上。这两个站点之间的传播时延为225比特时间。现假定 A 开始发送一帧,并且在 A 发送结束之前 B 也发送一帧。如果 A 发送的是以太网所容许的最短的帧,那么 A 在检测到和 B 发生碰撞之前能否把自己的数据发送完毕?换言之,如果 A 在发送完毕之前并没有检测到碰撞,那么能否肯定 A 所发送的帧不会和 B 发送的帧发生碰撞?(提示:在计算时应当考虑到每一个以太网帧在发送到信道上时,在 MAC 帧前面还要增加若干字节的前同步码和帧定界符。)
【3-25】上题中的站点 A 和 B 在 t =0时同时发送了数据帧。当 t =225比特时间时, A 和 B 同时检测到发生了碰撞,并且在 t =225+48=273比特时间时完成了干扰信号的传输。 A 和 B 在 CSMA / CD 算法中选择不同的 r 值退避。假定 A 和 B 选择的随机数分别是 ra =0和 rB =1.试问 A 和 B 各在什么时间开始重传其数据帧? A 重传的数据帧在什么时间到达 B ? A 重传的数据会不会和 B 重传的数据再次发生碰撞? B 会不会在预定的重传时间停止发送数据?
【3-26】以太网上只有两个站,它们同时发送数据据,产生了碰撞。于是按截断二进制指数退避算法进行重传。重传次数记为 i , i =1,2,2,3,……。试计算第1次重传失败的概率、第2次重传失败的概率、第3次重传传失败的概率,以及一个站成功发送数据之前的平均重传次数 I 。
【3-27】有10个站连接到以太网上。试计算以下下三种情况下毎一个站所能得到的带宽。(1)10个站都连接到一个10 Mbit ’ s 以太网集线器。(2)10个站都连接到一个100 Mbits 以太网集线线器。(3)10个站都连接到一个10 Mbits 以太网交换机。
【3-28】10 Mbit / s 以太网升级到100 Mbit / s ,1 Gbit / s 和10 Gbit / s 时,都需要解决哪些技术问题?为什么以太网能够在发展的过程中淘汰掉自己的竞争对手,并使自己的应用范围从局域网一直扩展到城域网和广域网?
【3-29】以太网交换机有何特点?用它怎样组成虚拟局域网?
【3-30】在图 T -3-30中,某学院的以太网交换机有三个接口分别和学院三个系的以太网相连,另外三个接口分别和电子邮件服务器、万维网服务器以及一个连接互联网的路由器相连。图中的 A , B 和 C 都是100 Mbit / s 以太网交换机。假定所有链路的速率都是100 Mbit / s ,并且图中的9台主机中的任何一台都可以和任何一台服务器或主机通信。试计算这9台主机和两台服务器产生的总的吞吐量的最大值。
【3-31】假定在图 T -3-30中的所有链路的速率仍然为100 Mbit / s ,但三个系的以太网交换机都换成100 Mbit / s 的集线器。试计算这9台主机和两台服务器产生的总的吞吐量的最大值。
【3-32】假定在图 T -3-30中的所有链路的速率仍然为100 Mbit / s ,但所有的以太网交换机都换成100 Mbit / s 的集线器。试计算这9台主机和两台服务器产生的总的吞吐量的最大值。
【3-33】在图 T -3-33中,以太网交换机有6个接口,分别接到5台主机和一个路由器。
【3-01】数据链路(即逻辑链路)与链路(即物理链路)有何区别?"链路接通了"与"数据链路接通了"的区别何在?
解答:所谓链路就是从一个节点到相邻节点的一段物理线路,而中间没有任何其他的交换节点。在进行数据通信时,两个计算机之间的通信路径往往要经过许多段这样的链路。可见链路只是一条路径的组成部分。链路接通了,表示物理链路接通了。
数据链路则是另一个概念。这是因为当需要在一条线路上传送数据时,除了必须有一条物理线路,还必须有一些必要的通信协议来控制这些数据的传输。若把实现这些协议的硬件和软件加到链路上,就构成了数据链路。现在最常用的方法是使用网络适配器(如拨号上网使用拨号适配器,以及通过以太网上网使用局域网适配器)来实现这些协议的硬件和软件。一般的适配器都包括了数据链路层和物理层这两层的功能。
也有人采用另外的术语。这就是把链路分为物理链路和逻辑链路。物理链路就是上面所说的链路,而逻辑链路就是上面的数据链路,是物理链路加上必要的通信协议。
【3-02】数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点。

【3-03】网络适配器的作用是什么?网络适配器工作在哪一层?

【3-04】数据链路层的三个基本问题(封装成帧、透明传输和差错检测)为什么都必须加以解决?


【3-05】如果在数据链路层不进行封装成帧,会发生什么问题?

【3-06】 PPP 协议的主要特点是什么?为什么 PPP 不使用帧的编号? PPP 适用于什么情况?为什么 PPP 协议不能使数据链路层实现可靠传输?

【3-07】要发送的数据为1101011011。采用 CRC 的生成多项式是 P ( X )= X + X +1。试求应添加在数据后面的余数。若要发送的数据在传输过程中最后一个1变成了0,即变成了1101011010,问接收端能否发现?若要发送的数据在传输过程中最后两个1都变成了0,即变成了1101011000,问接收端能否发现?采用 CRC 检验后,数据链路层的传输是否就变成了可靠的传输?


【3-08】要发送的数据为101110。采用 CRC 的生成多项式是 P ( X )= X +1。试求应添加在数据后面的余数。

【3-09】一个 PPP 帧的数据部分(用十六进制写出)是7D5EFE277D5D7D5D657D5E。试问真正的数据是什么(用十六进制写出)?

【3-10】 PPP 协议使用同步传输技术传送比特串0110111111111100。试问经过零比特填充后变成怎样的比特串?若接收端收到的 PPP 帧的数据部分是0001110111110111110110,试问删除发送端加入的零比特后会变成怎样的比特串?

![]()
【3-11】试分别讨论以下各种情况在什么条件下是透明传输,在什么条件下不是透明传输。(提示:请弄清什么是"透明传输",然后考虑能否满足其条件。)
(1)普通的电话通信。
(2)互联网提供的电子邮件服务。

【3-12】 PPP 协议的工作状态有哪几种?当用户要使用 PPP 协议和 ISP 建立连接进行通信时,需要建立哪几种连接?每一种连接解决什么问题?


【3-13】局域网的主要特点是什么?为什么局域网采用广播通信方方式而广域网不采用呢?

【3-14】常用的局域网的网络拓扑有有哪些种类?现在最流行的是哪种结构构?为什么早期的以太网选择总线拓扑结构而不使用星形拓扑结构,但现在却改为使用用星形拓扑结构呢?

【3-15】什么叫作传统以太网?以太网有哪两个主要标准?


【3-16】数据率为10 Mbit / s 的以太网在物理媒体上的码元传输速率(即码元/秒)是多少?

【3-17】为什么 LLC 子层的标准已制定出来了但现在却很少使用?

【3-18】试说明10BASE- T 中的"10"" BASE “和” T "所代表的意思。
解答:"10"代表这种以太网具有10 Mbit / s 的数据率, BASE 表示连接线上的信号是基带信号, T 代表双绞线( Twisted - pair )。
【3-19】以太网使用的 CSMA / CD 协议是以争用方式接入到共享信道的,这与传统的时分复用 TDM 相比有何优缺点?


【3-20】假定1 km 长的 CSMA / CCD 网络的数据率为1 Gbits 。设信信号在网络上的传播速率为200000 km ' s 。求能够使用此协议的的最短帧长。

【3-21】什么叫作比特时间?使用这种时间间单位有什么好处?100比特时间是多少微微秒?

【3-22】假定在使用 CSMACD 协协议的10 Mbit ' s 以太网中某个站古在发送数据时检测到碰撞,执行退避算法时选择了随机数 rr =100。试问这个站需要等待多长时间后才能再次发送数据?如果是100Mbbits的以太网呢?

3-23

【3-24】假定站点 A 和 B 在同一个10 Mbit / s 以太网网段上。这两个站点之间的传播时延为225比特时间。现假定 A 开始发送一帧,并且在 A 发送结束之前 B 也发送一帧。如果 A 发送的是以太网所容许的最短的帧,那么 A 在检测到和 B 发生碰撞之前能否把自己的数据发送完毕?换言之,如果 A 在发送完毕之前并没有检测到碰撞,那么能否肯定 A 所发送的帧不会和 B 发送的帧发生碰撞?(提示:在计算时应当考虑到每一个以太网帧在发送到信道上时,在 MAC 帧前面还要增加若干字节的前同步码和帧定界符。)

![]()
【3-25】上题中的站点 A 和 B 在 t =0时同时发送了数据帧。当 t =225比特时间时, A 和 B 同时检测到发生了碰撞,并且在 t =225+48=273比特时间时完成了干扰信号的传输。 A 和 B 在 CSMA / CD 算法中选择不同的 r 值退避。假定 A 和 B 选择的随机数分别是 ra =0和 rB =1.试问 A 和 B 各在什么时间开始重传其数据帧? A 重传的数据帧在什么时间到达 B ? A 重传的数据会不会和 B 重传的数据再次发生碰撞? B 会不会在预定的重传时间停止发送数据?



【3-26】以太网上只有两个站,它们同时发送数据据,产生了碰撞。于是按截断二进制指数退避算法进行重传。重传次数记为 i , i =1,2,2,3,……。试计算第1次重传失败的概率、第2次重传失败的概率、第3次重传传失败的概率,以及一个站成功发送数据之前的平均重传次数 I 。

【3-27】有10个站连接到以太网上。试计算以下下三种情况下毎一个站所能得到的带宽。
(1)10个站都连接到一个10 Mbit ’ s 以太网集线器。
(2)10个站都连接到一个100 Mbits 以太网集线线器。
(3)10个站都连接到一个10 Mbits 以太网交换机。

【3-28】10 Mbit / s 以太网升级到100 Mbit / s ,1 Gbit / s 和10 Gbit / s 时,都需要解决哪些技术问题?为什么以太网能够在发展的过程中淘汰掉自己的竞争对手,并使自己的应用范围从局域网一直扩展到城域网和广域网?



【3-29】以太网交换机有何特点?用它怎样组成虚拟局域网?


【3-30】在图 T -3-30中,某学院的以太网交换机有三个接口分别和学院三个系的以太网相连,另外三个接口分别和电子邮件服务器、万维网服务器以及一个连接互联网的路由器相连。图中的 A , B 和 C 都是100 Mbit / s 以太网交换机。假定所有链路的速率都是100 Mbit / s ,并且图中的9台主机中的任何一台都可以和任何一台服务器或主机通信。试计算这9台主机和两台服务器产生的总的吞吐量的最大值。

【3-31】假定在图 T -3-30中的所有链路的速率仍然为100 Mbit / s ,但三个系的以太网交换机都换成100 Mbit / s 的集线器。试计算这9台主机和两台服务器产生的总的吞吐量的最大值。

【3-32】假定在图 T -3-30中的所有链路的速率仍然为100 Mbit / s ,但所有的以太网交换机都换成100 Mbit / s 的集线器。试计算这9台主机和两台服务器产生的总的吞吐量的最大值。
![]()
【3-33】在图 T -3-33中,以太网交换机有6个接口,分别接到5台主机和一个路由器。

相关文章:
【计算机网络】第三章课后习题答案
习题目录: 【3-01】数据链路(即逻辑链路)与链路(即物理链路)有何区别?"链路接通了"与"数据链路接通了"的区别何在? 【3-02】数据链路层中的链路控制包括哪些功能…...
cesium 地图蒙版遮罩效果
示例代码 <!DOCTYPE html> <html lang"en"><head><!-- Use correct character set. --><meta charset"utf-8" /><!-- Tell IE to use the latest, best version. --><meta http-equiv"X-UA-Compatible"…...
根据前序遍历结果构造二叉搜索树
根据前序遍历结果构造二叉搜索树-力扣 1008 题 题目说明: 1.preorder 长度>1 2.preorder 没有重复值 直接插入 解题思路: 数组索引[0]的位置为根节点,与根节点开始比较,比根节点小的就往左边插,比根节点大的就往右…...
微信小程序指定某个元素强制重新渲染
之前写过 vue强制让某个元素重新渲染 利用了vue中的 v-if会控制元素是否挂载 以及 $nextTick 等待响应式更改生效再执行的特性 小程序也都有类似的方法 我们可以这样 wxml <view wx:if"{{min true}}">你好</view>用 wx:if 作用和v-if是一样的 js th…...
国际教材概念基础
各种区别 缩写 A-LEVEL(大学预科):General Certificate of Education Advanced Level AP:Advanced Placement(美国地区:美高AP) GCSE:General Certificate of Secondary Educati…...
2023全国大学生软件测试大赛开发者测试练习题满分答案(PairingHeap2023)
2023全国大学生软件测试大赛开发者测试练习题满分答案(PairingHeap2023) 题目详情题解代码(直接全部复制到test类中即可) 提示:该题只需要分支覆盖得分即可,不需要变异得分 题目详情 题解代码(…...
介绍一下tokens
“Tokens” 是一个计算机科学和自然语言处理领域常用的术语,通常用于表示文本中的最小单位。在这个上下文中,我将解释一下 “tokens” 的含义以及它们在不同领域中的用途: 自然语言处理 (NLP): 在自然语言处理中,“token” 是指文…...
机器学习、深度学习相关的项目集合【自行选择即可】
【基于YOLOv5的瓷砖瑕疵检测系统】 YOLOv5是一种目标检测算法,它是YOLO(You Only Look Once)系列模型的进化版本。YOLOv5是由Ultralytics开发的,基于一阶段目标检测的概念。其目标是在保持高准确率的同时提高目标检测的速度和效率…...
百面机器学习书刊纠错
百面机器学习书刊纠错 P243 LSTM内部结构图 2023-10-7 输入门的输出 和 candidate的输出 进行按元素乘积之后 要和 遗忘门*上一层的cell state之积进行相加。...
vue2安装cesium并使用
一、安装 1.安装cesium npm install cesium1.95.0 -S 2.安装所需 npm install copy-webpack-plugin10.2.4 -D 二、配置 1.配置vue.config.js vue 中引入cesium 需要用copy-webpack-plugin 把一些文件拷贝到打包目录 // vue.config.js const CopyWebpackPlugin require…...
基于Docker来部署Nacos的注册中心
基于Docker来部署Nacos的注册中心 准备MySQL数据库表nacos.sql,用来存储Nacos的数据。 最终表结构如下: 在本地nacos/custom.env文件中,有一个MYSQL_SERVICE_HOST也就是mysql地址,需要修改为你自己的虚拟机IP地址: …...
黑马JVM总结(三十一)
(1)类加载器-概述 启动类加载器-扩展类类加载器-应用程序类加载器 双亲委派模式: 类加载器,加载类的顺序是先依次请问父级有没有加载,没有加载自己才加载,扩展类加载器在getParent的时候为null 以为Boots…...
【C++】list基本接口+手撕 list(详解迭代器)
父母就像迭代器,封装了他们的脆弱...... 手撕list目录: 一、list的常用接口及其使用 1.1list 构造函数与增删查改 1.2list 特殊接口 1.3list 排序性能分析 二、list 迭代器实现(重点难点) 关于迭代器的引入知识:…...
PowerShell pnpm : 无法加载文件 C:\Users\lenovo\AppData\Roaming\npm\pnpm.ps1
1、右键点击【开始】,打开Windows PowerShell(管理员) 2、运行命令set-ExecutionPolicy RemoteSigned 3、根据提示,输入A,回车 此时管理员权限已经可以运行pnpm 如果vsCode还报该错误 继续输入 4、右键点击【开始】,打…...
mysql面试题33:Blob和text有什么区别
该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:Blob和text有什么区别 Blob和text是数据库中存储大文本数据的两种数据类型&#…...
docker版jxTMS使用指南:4.6版升级内容
4.6版jxTMS已经发布,升级了多个重大能力,本系列文章将逐一进行讲解。 docker版本的使用,请查看:docker版jxTMS使用指南 4.0版jxTMS的说明,请查看:4.0版升级内容 4.2版jxTMS的说明,请查看&…...
java最优建树算法
建树算法 树的数据结构 {"code": "1111","name": "","parentcode": "0000","children": null }, {"code": "2222","name": "","parentcode": &q…...
mysql面试题30:什么是数据库连接池、应用程序和数据库建立连接的过程、为什么需要数据库连接池、你知道哪些数据库连接池
该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:什么是数据库连接池? 数据库连接池是一种用于管理和复用数据库连接的技术。它是在应用程序和数据库之间建立一组数据库连接,并以池的形式存储起…...
【Vue】vscode格式刷插件Prettier以及配置项~~保姆级教程
文章目录 前言一、下载插件二、在项目内创建配置文件1.在根目录创建,src同级2.写入配置3.每个字段含义 总结 前言 vscode格式刷,有太多插件了,但是每个的使用,换行都不一样。 这里我推荐一个很多人都推荐了的Prettier 一、下载插…...
.NET 8 中的调试增强功能
作者:James Newton-King 排版:Alan Wang 开发人员喜欢 .NET 强大且用户友好的调试体验。您可以在您选择的 IDE 中设置断点,启动已经附加上调试器的程序,逐步执行代码并查看 .NET 应用程序的状态。 在 .NET 8 中,我们致…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...

