当前位置: 首页 > news >正文

TensorFlow入门(十九、softmax算法处理分类问题)

softmax是什么?

        Sigmoid、Tanh、ReLU等激活函数,输出值只有两种(0、1,或-1、1或0、x),而实际现实生活中往往需要对某一问题进行多种分类。例如之前识别图片中模糊手写数字的例子,这个时候就需要使用softmax算法。

softmax的算法逻辑

         如果判断输入属于某一个类的概率大于属于其他类的概率,那么这个类对应的值就逼近于1,其他类的值就逼近于0。它能将一个含任意实数的K维向量"压缩"到另一个K维向量中,使得每一个元素的范围都在0~1之间,并且使所有元素的和为1。同时,它可以将分类结果归一化,形成一个概率分布。

        softmax算法主要应用于多分类,而且是互斥的,即只能属于其中的一个类。而像Sigmoid这些一般的激活函数只能分两类,因此可以把softmax理解为是Sigmoid类的激活函数的扩展。

        其算法公式:

                即把所有值用e的n次方计算出来,求和后算每个值占的比率,保证总和为1,一般就可以认为softmax得出的就是概率。这里的exp(logits)指的就是e^logits。

                注意 : 对于要生成的多个类任务中不是互斥关系的任务,一般会使用多个二分类来组成。

softmax的原理

        以下为一个简单的softmax网络模型图:

                

        如图所示,输入的是x1和x2,识别输出的为y1、y2和y3三个类。

        对于属于y1类的概率,可以转化成输入x1满足某个条件的概率,与x2满足某个条件的概率的乘积,即y1 = (x1*w11)*(x2*w12)。在网络模型里把等式两边都取ln,ln后的属于y1类的概率就可以转化成,ln后的x1满足某个条件的概率加上ln后的x2满足某个条件的概率,即y1 = x1*w11+x2*w12等于ln后y1的概率。这也是softmax公式中要进行一次e的logits次方的原因。

        注意 : 等式两边取ln是神经网络中常用的技巧,主要用来将概率的乘法转变成加法,即ln(x*y) = lnx + lny。然后在后续计算中再将其转为e的x次方,还原成原来的值。

        举例 : 

                假设三个数值A=5,B=1,C=-1,那么他们的softmax占比为:

                        P(A)=(e^5)/(e^5 + e + e^-1)

                        P(B)=(e^1)/(e^5 + e + e^-1)

                        P(C)=(e^-1)/(e^5 + e + e^-1)

                计算结果为 : P(A) = 0.9817        P(B) = 0.0180        P(C) = 0.0003

                                     P(A) + P(B) + P(C) = 1

                因为P(A)值最大,因此取最大的值A为最终的分类。

softmax的一些特性

        ①归一化 : 每一个分类的概率之和为1,每一个分类都是一个小于1的数值。

        ②具有放大效果,比如上面例子中单纯从数值来看,5和1的差距并不大,但是通过指数运算后有明显的放大效果,5的占比能到98%以上。

        ③具有散列性质,每一个比率虽然最后都会进行归一化,但是他们放大之前的数值是可以相互不干扰的。

        基于上述这些特征,softmax在机器学习中的应用非常广泛,比如之前识别MNIST中每张图片中的数字是哪一个数字,就是一个使用softmax回归(softmax regression)模型的经典案例。

        注意 : 在实际使用中,softmax伴随的分类标签都为one_hot编码,而且这里还有个技巧,在softmax时需要将目标分成几类,就在最后这层放几个节点。

常用的分类函数

        TensorFlow中常用的分类函数主要有两个:

                ①tf.nn.softmax(logits,axis = None,name = None)

                        tf.nn.softmax函数最终返回的是一个tensor,与参数logits具有相同的类型和shape,这个tensor代表向量各个位置的得分(即概率)。所以通过tf.nn.softmax函数将logistic的预测二分类的概率的问题推广到了n分类的概率的问题。

                ②tf.nn.log_softmax(logits,axis = None,name = None)

                        tf.nn.log_softmax函数是对tf.nn.softmax函数的结果取对数,即把softmax函数的结果再进行log计算一遍。使用它可以使得计算速度变快,数据更加稳定。同时,也可以直接用于计算softmax的交叉熵loss。

        每个参数的意义如下:

                logits代表一个非空的tensor。类型必须是float32或float64

                axis表示在哪个维度上执行softmax计算。默认值为-1,表示最后一个维度

                name为操作的名称

如何使用softmax函数

        示例代码如下:

import tensorflow as tfvar = tf.constant([2,3,6,10,4,5,1],dtype = tf.float32)
pr = tf.nn.softmax(var)print(pr)
#tf.argmax()函数用于找到张量(Tensor)中指定维度上的最大值的索引。它返回的是最大值所在位置的索引值
print(tf.argmax(pr))

相关文章:

TensorFlow入门(十九、softmax算法处理分类问题)

softmax是什么? Sigmoid、Tanh、ReLU等激活函数,输出值只有两种(0、1,或-1、1或0、x),而实际现实生活中往往需要对某一问题进行多种分类。例如之前识别图片中模糊手写数字的例子,这个时候就需要使用softmax算法。 softmax的算法逻辑 如果判断输入属于某一个类的概率大于属于其…...

刷题用到的非常有用的函数c++(持续更新)

阅读导航 字符串处理类一、stoi()(将字符串转换为整数类型)二、to_string()(将整数类型转换为字符串类型)三、stringstream函数(将一个字符串按照指定的分隔符进行分词) 字符串处理类 一、stoi()&#xff…...

黑客技术(网络安全)——自学思路

如果你想自学网络安全,首先你必须了解什么是网络安全!,什么是黑客!! 1.无论网络、Web、移动、桌面、云等哪个领域,都有攻与防两面性,例如 Web 安全技术,既有 Web 渗透2.也有 Web 防…...

lNmp安装:

一、LNMP LNMP架构是目前成熟的企业网站应用模式之一,指的是协同工作的一整套系统和相关软件, 能够提供动态Web站点服务及其应用开发环境。LNMP是一个缩写词,具体包括Linux操作系统、nginx网站服务器、MySQL数据库服务器、 PHP(或…...

Fisher辨别分析

问题要求 在UCI数据集上的Iris和Sonar数据上验证算法的有效性。训练和测试样本有三种方式(三选一)进行划分: (一) 将数据随机分训练和测试,多次平均求结果 (二)K折交叉验证 &…...

【Zookeeper专题】Zookeeper选举Leader源码解析

目录 前言阅读建议课程内容一、ZK Leader选举流程回顾二、源码流程图三、Leader选举模型图 学习总结 前言 为什么要看源码?说实在博主之前看Spring源码之前没想过这个问题。因为我在看之前就曾听闻大佬们说过【JavaCoder三板斧:Java,Mysql&a…...

机器学习之自训练协同训练

前言 监督学习往往需要大量的标注数据, 而标注数据的成本比较高 . 因此 , 利用大量的无标注数据来提高监督学习的效果有着十分重要的意义. 这种利用少量标注数据和大量无标注数据进行学习的方式称为 半监督学习 ( Semi…...

ubuntu 通过apt-get快速安装 docker

在使用 apt-get 安装 Docker 之前,你需要确保你的系统已经准备好并且已经更新了软件包列表。以下是在 Ubuntu 系统上使用 apt-get 安装 Docker 的步骤: 更新软件包列表: sudo apt-get update 安装依赖软件包,以确保可以通过 HTTPS 使用存储库: sudo apt-get install apt-t…...

C++医院影像科PACS源码:三维重建、检查预约、胶片打印、图像处理、测量分析等

PACS连接DICOM接口的医疗器械(如CT、MRI、CR、DR、DSA、各种窥镜成像系统设备等),实现图像无损传输,实现DICOM胶片打印机回传打印功能,支持各种图像处理,可以进行窗技术调节,与登记台管理系统共…...

企业聊天应用程序使用 Kubernetes

1. 客户端-服务器工作流程 客户端:在我们的架构中,客户端可以分为三种类型:iOS 和 Android 移动应用程序以及 Web 聊天。移动应用程序首先通过 API 网关服务与服务器进行通信,其中客户端会生成一个访问令牌,该令牌将授…...

记录用命令行将项目打包成war包

记录用命令行将项目打包成war包 找到项目的pom.xml 在当前路径下进入cmd 输入命令 mvn clean package 发现报错了 Failed to execute goal org.apache.maven.plugins:maven-war-plugin:2.2:war (default-war) on project MMS: Error assembling WAR: webxml attribute is req…...

Linux基础知识笔记

Linux基础知识笔记 介绍/dev/null作用2>&1作用 介绍 记录linux基础知识,持续更新中… /dev/null作用 /dev/null 是一个特殊的设备文件,可以将数据重定向到这个文件中,从而实现将输出或错误信息丢弃的效果。在 Linux 系统中&#xf…...

Laya3.0 入门教程

点击play箭头 点击右边的开发者工具 就会弹出 chrome的调试窗口 然后定位到你自己的ts文件 直接在ts里断点即可 不需要js文件 如何自动生成代码? 比如你打开一个新项目 里面显示的是当前场景 只需要点击 UI运行时 右边的框就可以了 他会自动弹窗提示你 创建一个文…...

3D全景虚拟样板间展销系统扩展用户市场范围

VR样板间,能够真实还原现场,定制需要的场景。让一切比真实更真实。用户可以720度看房,自由行走在空间里,直观感受各空间的大小,看到自己家中的“未来样子”,同时通过操控手柄,控制整个智能家居系…...

如何编写lua扩展库

很多人都听过lua,也见过lua脚本,但可能不理解为什么lua脚本里面会有这么多没见过的函数, 而且这些函数功能是如此强大,能上天入地,无所不能 其实这些函数并不是lua自带的,都是由程序作者造出来的隐藏在了他们的主程序里 一般运行lua脚本,我们会使用自带的解释器,当你拿到一份…...

Java List 中存不同的数据类型

在最近的实践中&#xff0c;有人突然问了一个问题&#xff1a; 在 Java 的 List 中可以存不同的数据类型吗&#xff1f; 这个问题突然给问到了&#xff0c;我们都知道 Java 中的 List 中存的是对象&#xff0c;通常我们定义都会这样的定义&#xff1a; List<String> t…...

pyqt5:openpyxl 读取 Excel文件,显示在 QTableWidget 中

pip install openpyxl openpyxl-3.1.2-py2.py3-none-any.whl (249 kB) et_xmlfile-1.1.0-py3-none-any.whl (4.7 kB) 摘要&#xff1a;A Python library to read/write Excel 2010 xlsx/xlsm files pip install pyqt5; pip install pyqt5-tools; 编写 openpyxl_pyqt5.py 如…...

在RabbitMQ中使用新的MQTT 5.0功能

MQTT是物联网&#xff08;IoT&#xff09;的标准协议&#xff0c;是轻量级的&#xff0c;协议头很小&#xff0c;可以节省网络带宽。MQTT也很有效&#xff0c;与其他消息传递协议相比&#xff0c;客户端通过更短的握手进行连接和身份验证。 以下是本文介绍的MQTT 5.0功能列表&…...

flinkcdc 体验

0 flink版本 踩雷 java代码操作 flink Table/SQL API 和 DataStream API 编写程序后&#xff0c;打成jar包丢到flink集群运行&#xff0c;报错首选需要考虑flink集群版本和 jar包中maven依赖的版本是否一致。 目前网上flink、flinkcdc相关博文绝大部分是基于flink1.13、1.14编…...

Kafka知识补充

如何避免 Rebalance 最简单粗暴的就是 &#xff1a; 减少组成员数量发生变化 每个 Consumer 实例都会定期地向 Coordinator 发送心跳请求&#xff0c;表明它还存活着。如果某个 Consumer 实例不能及时地发送这些心跳请求&#xff0c;Coordinator 就会认为该 Consumer 已经“死…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备&#xff0c;并且图标都没了 错误案例 往上一顿搜索&#xff0c;试了很多博客都不行&#xff0c;比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动&#xff0c;重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

【1】跨越技术栈鸿沟:字节跳动开源TRAE AI编程IDE的实战体验

2024年初&#xff0c;人工智能编程工具领域发生了一次静默的变革。当字节跳动宣布退出其TRAE项目&#xff08;一款融合大型语言模型能力的云端AI编程IDE&#xff09;时&#xff0c;技术社区曾短暂叹息。然而这一退场并非终点——通过开源社区的接力&#xff0c;TRAE在WayToAGI等…...

Modbus转Ethernet IP深度解析:磨粉设备效率跃升的底层技术密码

在建材矿粉磨系统中&#xff0c;开疆智能Modbus转Ethernet IP网关KJ-EIP-101的应用案例是一个重要的技术革新。这个转换过程涉及到两种主要的通信协议&#xff1a;Modbus和Ethernet IP。Modbus是一种串行通信协议&#xff0c;广泛应用于工业控制系统中。它简单、易于部署和维护…...