交叉熵Loss多分类问题实战(手写数字)
1、import所需要的torch库和包
2、加载mnist手写数字数据集,划分训练集和测试集,转化数据格式,batch_size设置为200
3、定义三层线性网络参数w,b,设置求导信息
4、初始化参数,这一步比较关键,是否初始化影响到数据质量以及后续网络学习效果
5、自定义三层线性网络
6、选定优化器激活函数和loss函数
7、训练及测试,并记录每轮训练的loss变化和在测试集上的效果。第一轮就达到了98的准确度,判断是初始化效果较好,在前几次测试中根据初始化的情况不同,初始准确率为50%-85%不等
完整代码:
import torch
import torchvision
import torch.nn.functional as Ftrain_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('mnist_data', train=True, download=True,transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307, ), (0.3081, ))])),batch_size=200, shuffle=True)test_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('mnist_data', train=False, download=True,transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307, ), (0.3081, ))])),batch_size=200, shuffle=True)w1 = torch.randn(200, 784, requires_grad=True)
b1 = torch.randn(200, requires_grad=True)
w2 = torch.randn(200, 200, requires_grad=True)
b2 = torch.randn(200, requires_grad=True)
w3 = torch.randn(10, 200, requires_grad=True)
b3 = torch.randn(10, requires_grad=True)torch.nn.init.kaiming_normal_(w1)
torch.nn.init.kaiming_normal_(w2)
torch.nn.init.kaiming_normal_(w3)def forward(x):x = x@w1.t() +b1x = F.relu(x)x = x@w2.t() +b2x = F.relu(x)x = x@w3.t() +b3x = F.relu(x)return xoptimizer = torch.optim.Adam([w1, b1, w2, b2, w3, b3], lr=0.001)
criterion = torch.nn.CrossEntropyLoss()for epoch in range(10):for batch_idx, (data, target) in enumerate(train_loader):data = data.view(-1, 28*28)logits = forward(data)loss = criterion(logits, target)optimizer.zero_grad()loss.backward()optimizer.step()if (batch_idx+1) % 150 == 0:print('Train Epoch:{} [{}/{}({:.0f}%)]\tLoss:{:.6f}'.format(epoch, (batch_idx+1) * len(data), len(train_loader.dataset),100. * (batch_idx+1) / len(train_loader), loss.item()))test_loss = 0correct = 0for data, target in test_loader:data = data.view(-1, 28*28)logits = forward(data)test_loss += criterion(logits, target).item()pred = logits.data.max(1)[1]correct += pred.eq(target.data).sum()test_loss /= len(test_loader)print('\nTest Set:Average Loss:{:.4f}, Accuracy:{}/{}({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))
相关文章:

交叉熵Loss多分类问题实战(手写数字)
1、import所需要的torch库和包 2、加载mnist手写数字数据集,划分训练集和测试集,转化数据格式,batch_size设置为200 3、定义三层线性网络参数w,b,设置求导信息 4、初始化参数,这一步比较关键,…...
如何看待Unity新的收费模式?(InsCode AI 创作助手)
Unity引擎是目前全球最受欢迎的3D游戏和应用开发引擎之一,按照Unity公司自己的说法,全球1000款畅销移动游戏中70%以上都使用了Unity引擎。如果统计全平台(包括PC、主机和移动设备)的情况,非官方数据是,超过…...

Android Studio git 取消本地 commit(未Push)
操作比较简单 1.选中项目然后依次选择:Git->Repository->Reset HEAD 2.然后再to Commit中输入HEAD^,表示退回到上一个版本。...

ViewModifier/视图修饰符, ButtonStyle/按钮样式 的使用
1. ViewModifier 视图修饰符 1.1 创建默认按钮视图修饰符 ViewModifierBootcamp.swift import SwiftUI/// 默认按钮修饰符 struct DefaultButtonViewModifier: ViewModifier{let bcakgroundColor: Colorfunc body(content: Content) -> some View {content.foregroundColor…...

科技资讯|微软AR眼镜新专利曝光,可拆卸电池解决续航焦虑
微软正在深入研究增强现实(AR)领域,最近申请了一项“热插拔电池”相关专利。该专利于 2023 年 10 月 5 日发布,描述了采用模块化设计的 AR 眼镜,热插拔电池放置在了镜腿部分,可以直接拿下替换,对…...
idea系列---【上一次打开springboot项目还好好的,现在打开突然无法启动了】
问题 昨天走的时候项目还能正常启动,今天来了之后突然报下面的错误: Error:Kotlin: Module was compiled with an incompatible version of Kotlin. The binary version of its metadata is 1.7.1, expected version is 1.1.16. 解决方案 点击 idea: Bui…...
查询资源消耗
import subprocess def get_cpu_usage(pid, duration): output subprocess.check_output([‘pidstat’, ‘-d’, ‘-p’, str(pid), ‘1’, str(duration)]).decode(‘utf-8’) lines output.strip().split(’\n’) cpu_usage [] for line in lines[4:]: fields line.spli…...

conda: error: argument COMMAND: invalid choice: ‘activate‘
参考:https://github.com/conda/conda/issues/13022 输入后重启terminal即可...

新鲜速递:Spring Cloud Alibaba环境在Spring Boot 3时代的快速搭建
了解 首先,Spring Cloud Alibaba使用的是Nacos作为服务注册和服务发现的中间件。 能力在提供者那里,而消费者只需知道提供者提供哪些服务,而无需关心提供者在哪里,实际调用过程如下图 准备工作 1、需要下载并安装Nacos最新版…...

网络-网络状态网络速度
文章目录 前言一、网络状态二、网络速度 前言 本文主要记录如何监听网络状态和网络速度。 一、网络状态 获取当前网络状态: navigator.onLine // true:在线 false:离线监听事件:online(联网) 和 offline(断网) windo…...

ACL访问控制列表的解析和配置
ACL的解析 个人简介 ACL - Access Control List 访问控制列表 策略 ------行为 允许/拒绝 ACL --包含两种 标准ACL 扩展ACL 标准ACL:只能针对源IP地址做限制 针对路由条目的限制 -路由策略 思科编号:1-99之间或1300-1999 扩展ACL:针对…...

记一次使用vue-markdown在vue中解析markdown格式文件,并自动生成目录大纲
先上效果图 如图所示,在网页中,能直接解析markdown文档,并且生成目录大纲,也支持点击目录标题跳转到对应栏目中,下面就来讲讲是如何实现此功能的。 1、下载vue-markdown yarn add vue-markdown 2、在页面中渲染markdo…...
力扣每日一题35:搜索插入的位置
题目描述: 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 示例 1: 输入: nums [1,3,5,6], target 5…...
Iptabels的相关描述理解防火墙的必读文章
Iptabels是与Linux内核集成的包过滤防火墙系统,几乎所有的linux发行版本都会包含Iptables的功能。如果 Linux 系统连接到因特网或 LAN、服务器或连接 LAN 和因特网的代理服务器, 则Iptables有利于在 Linux 系统上更好地控制 IP 信息包过滤和防火墙配置。…...
Maven 构建项目测试
在上一章节中我们学会了如何使用 Maven 创建 Java 应用。接下来我们要学习如何构建和测试这个项目。 进入 C:/MVN 文件夹下,打开 consumerBanking 文件夹。你将看到有一个 pom.xml 文件,代码如下: <project xmlns"http://maven.apa…...

机器学习 - 似然函数:概念、应用与代码实例
目录 一、概要二、什么是似然函数数学定义似然与概率的区别重要性举例 三、似然函数与概率密度函数似然函数(Likelihood Function)定义例子 概率密度函数(Probability Density Function, PDF)定义 区别与联系 四、最大似然估计&am…...
LeetCode 热题 100-49. 字母异位词分组
题目描述 给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。 字母异位词 是由重新排列源单词的所有字母得到的一个新单词。 示例 1: 输入: strs [“eat”, “tea”, “tan”, “ate”, “nat”, “bat”] 输出: [[“bat”],[“n…...

TensorFlow入门(十九、softmax算法处理分类问题)
softmax是什么? Sigmoid、Tanh、ReLU等激活函数,输出值只有两种(0、1,或-1、1或0、x),而实际现实生活中往往需要对某一问题进行多种分类。例如之前识别图片中模糊手写数字的例子,这个时候就需要使用softmax算法。 softmax的算法逻辑 如果判断输入属于某一个类的概率大于属于其…...

刷题用到的非常有用的函数c++(持续更新)
阅读导航 字符串处理类一、stoi()(将字符串转换为整数类型)二、to_string()(将整数类型转换为字符串类型)三、stringstream函数(将一个字符串按照指定的分隔符进行分词) 字符串处理类 一、stoi()ÿ…...

黑客技术(网络安全)——自学思路
如果你想自学网络安全,首先你必须了解什么是网络安全!,什么是黑客!! 1.无论网络、Web、移动、桌面、云等哪个领域,都有攻与防两面性,例如 Web 安全技术,既有 Web 渗透2.也有 Web 防…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...

宇树科技,改名了!
提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...
如何配置一个sql server使得其它用户可以通过excel odbc获取数据
要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据,你需要完成以下配置步骤: ✅ 一、在 SQL Server 端配置(服务器设置) 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到:SQL Server 网络配…...