当前位置: 首页 > news >正文

玩转ChatGPT:图像识别(vol. 1)

一、写在前面

来了来了,终于给我的账号开放图像识别功能了,话不多说,直接开测!!!

二、开始尝鲜

(1)咒语:

GPT回复:

这幅图显示了从2005年1月到2012年12月的8年时间里,每100,000人中肝炎的发病率。图中的纵轴表示肝炎的发病率(每100,000人),而横轴表示时间。

以下是对图中数据的主要观察结果:

(a)在2005年初,肝炎的发病率在10左右,随后在2005年中下降到了近5的低点。

(b)到了2007年初,肝炎的发病率急剧上升,达到了近25的高点,这是这8年里的最高发病率。

(c)在此后的时间里,肝炎的发病率呈现了波动的下降趋势,有几次明显的短期上升,但总体趋势是下降的。

(d)到2012年末,发病率回到了大约10的水平,与2005年初相似。

总体上,这幅图反映了在这8年时间里,肝炎的发病率经历了一个明显的高峰,随后整体呈现下降趋势,但在此过程中也有几次的短期反弹。

(2)咒语:

GPT回复:

这是两个图表,分别展示了某一模型在训练期间的损失和准确率。横轴表示训练的迭代次数,即Epochs,而纵轴在左图表示损失(Loss),在右图表示准确率(Accuracy)。

(a)训练损失 vs 验证损失 (左图):

训练损失(用蓝色线表示)从一个较高的值开始,并随着迭代次数的增加逐渐下降。这表明模型在训练数据上的表现逐渐改善。验证损失(用橙色线表示)也显示了类似的趋势,但在后期似乎略微平稳,与训练损失趋近。在整个训练过程中,训练损失和验证损失都呈现下降趋势,且二者非常接近,表明模型没有出现过拟合现象。

(b)训练准确率 vs 验证准确率 (右图):

训练准确率(用蓝色线表示)从一个较低的值开始,并随着迭代次数的增加逐渐上升。验证准确率(用橙色线表示)也呈现上升趋势,但在后期似乎略微平稳。在大约40个迭代后,训练准确率似乎略高于验证准确率,这可能是轻微的过拟合迹象,但差异不大。

总体来说,这些图表展示了模型在训练和验证数据集上的性能随着时间的变化。模型在损失上的表现逐渐改善,同时准确率也逐渐增加,这表明模型正在学习并优化其性能。不过,考虑到训练和验证之间的差异较小,这个模型似乎达到了一个良好的平衡,没有明显的过拟合或欠拟合现象。

(3)咒语:

GPT回复:

这些图像展示了两个混淆矩阵,用于评估模型在分类任务上的性能。在这种情境下,模型的任务是预测是否为“结核病”(Tuberculosis)或“正常”(Normal)。

第一个混淆矩阵:

真正例 (True Positive, TP):预测为结核病并且实际上是结核病的样本数量是128。

真负例 (True Negative, TN):预测为正常并且实际上是正常的样本数量是171。

假正例 (False Positive, FP):预测为结核病但实际上是正常的样本数量是9。

假负例 (False Negative, FN):预测为正常但实际上是结核病的样本数量是12。

第二个混淆矩阵:

TP:预测为结核病并且实际上是结核病的样本数量是452。

TN:预测为正常并且实际上是正常的样本数量是610。

FP:预测为结核病但实际上是正常的样本数量是110。

FN:预测为正常但实际上是结核病的样本数量是108。

此外,图像顶部还显示了一些关键指标的数值:

训练数据的平均损失值、验证数据的平均损失值、训练数据的准确率、验证数据的准确率等。

还给出了某些特定的评估指标,如预测结核病时的精确度、预测正常时的精确度、预测结核病时的召回率、预测正常时的召回率等。

总的来说,这些图表和指标为我们提供了关于模型在分类任务上性能的深入了解。从混淆矩阵中,我们可以清晰地看到模型在预测正常和结核病样本时的准确性以及它的误判情况。

(4)咒语:

GPT回复:

该图展示了TUT1 mRNA的相对表达水平在正常对照组(NC)和TUT1 RNAi处理组之间的差异。从图中可以看出,在经过TUT1 RNAi处理后,TUT1 mRNA的表达水平显著下降,与正常对照组相比,其差异具有统计学意义(标记为**,表示P < 0.01)。每个柱状图上的点代表单个样本的测量值,而柱状图的高度代表平均值,错误条代表标准误。

(5)咒语:

GPT回复:

这个假说图描述了TM感染如何影响细胞内的一系列分子事件。在TM感染后,TUT1蛋白质对NCOR2前mRNA进行调控,进而促进NCOR2-013 mRNA的产生。这种mRNA进一步被翻译成NCOR2-013蛋白,在细胞核中,它与HDAC3和TBL1X1相互作用并可能调控基因的表达,尤其是与炎症相关的基因如JUNB和H3,进而影响IL-1β、TNF-α等炎症相关因子的产生。

三、写在最后

OpenAI最近推出的GPT多模态功能,尽管目前只能进行图像识别,但这一进步已经极具创新性地突显了大型语言模型的强大实力与巨大潜能。只能说遥遥领先,遥遥领先。

此外,我相信这只是冰山一角,GPT图像识别功能肯定拥有更多可能性和应用场景等待我们去探索和实现。期待在未来的时间里,细致地对其进行深入测试,并通过实践发掘其更多价值和潜力。

相关文章:

玩转ChatGPT:图像识别(vol. 1)

一、写在前面 来了来了&#xff0c;终于给我的账号开放图像识别功能了&#xff0c;话不多说&#xff0c;直接开测&#xff01;&#xff01;&#xff01; 二、开始尝鲜 &#xff08;1&#xff09;咒语&#xff1a; GPT回复&#xff1a; 这幅图显示了从2005年1月到2012年12月的…...

oracle 数据库实验三

&#xff08;1&#xff09;向 ORCL数据库添加一个重做日志文件组&#xff08;组号为5&#xff09;&#xff0c;包含一个成员文件d:\redo05a.log,大小为4MB &#xff1b; 要向Oracle数据库添加一个重做日志文件组&#xff0c;您可以执行以下步骤&#xff1a; 连接到数据库&…...

多线程并发篇---第五篇

系列文章目录 文章目录 系列文章目录一、什么是线程安全二、Thread类中的yield方法有什么作用?三、Java线程池中submit() 和 execute()方法有什么区别?一、什么是线程安全 线程安全就是说多线程访问同一段代码,不会产生不确定的结果。 又是一个理论的问题,各式各样的答案有…...

java实现权重随机获取值或对象

文章目录 场景TreeMap.tailMap方法简单分析使用随机值使用treemap实现权重取值将Int改为Double稍微准确一点,因为double随机的值更加多测试main方法 当权重的参数比较多,那么建议使用hutool封装的 场景 按照权重2,8给用户分组为A,B, TreeMap.tailMap方法 treeMap是一种基于红…...

期权账户怎么开通的?佣金最低多少?

场内期权的合约由交易所统一标准化定制&#xff0c;大家面对的同一个合约对应的价格都是一致的&#xff0c;比较公开透明。期权开户当天不能交易的&#xff0c;期权开户需要满足20日日均50万及半年交易经验即可操作。 个人投资者想要交易期权首先就得先开户&#xff0c;根据规…...

MySQL(存储过程,store procedure)——存储过程的前世今生 MySQL存储过程体验 MybatisPlus中使用存储过程

前言 SQL&#xff08;Structured Query Language&#xff09;是一种用于管理关系型数据库的标准化语言&#xff0c;它用于定义、操作和管理数据库中的数据。SQL是一种通用的语言&#xff0c;可以用于多种关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;如MySQ…...

如何建立线上线下相结合的数字化新零售体系?

身处今数字化时代&#xff0c;建立线上线下相结合的数字化新零售体系是企业成功的关键。蚓链数字化营销系统致力于帮助企业实现数字化转型&#xff0c;打通线上线下销售渠道&#xff0c;提升品牌影响力和用户黏性&#xff0c;那么具体是如何建立的&#xff1f; 1. 搭建数字化中…...

python:xlwings 操作 Excel 加入图片

pip install xlwings ; xlwings-0.28.5-cp37-cp37m-win_amd64.whl (1.6 MB) 摘要&#xff1a;Make Excel fly: Interact with Excel from Python and vice versa. Requires: pywin32 编写 xlwings_test.py 如下 # -*- coding: utf-8 -*- """ xlwings 结合 …...

关于hive的时间戳

unix_timestamp&#xff08;&#xff09;和 from_unixtime&#xff08;&#xff09;的2个都是格林威治时间 北京时间 格林威治时间8 from_unixtme 是可以进行自动时区转换的 (4.0新特性) 4.0之前可以通过from_utc_timestamp进行查询 如果时间戳为小数&#xff0c;是秒&#…...

win10 wsl安装步骤

参考&#xff1a; 安装 WSL | Microsoft Learn 一、安装wsl 1.若要查看可通过在线商店下载的可用 Linux 发行版列表&#xff0c;请输入&#xff1a; wsl --list --online 或 wsl -l -o> wsl -l -o 以下是可安装的有效分发的列表。 使用 wsl.exe --install <Distro>…...

深入理解Spring Boot AOP:切面编程的优势与应用

在开发现代化的软件系统中&#xff0c;我们经常会遇到一些横切关注点&#xff08;cross-cutting concerns&#xff09;&#xff0c;比如日志记录、安全控制、事务管理等。传统的面向对象编程&#xff08;OOP&#xff09;在处理这些关注点时往往需要在多个模块中重复编写相似的代…...

使用大模型提效程序员工作

引言 随着人工智能技术的不断发展&#xff0c;大模型在软件开发中的应用越来越广泛。 这些大模型&#xff0c;如GPT、文心一言、讯飞星火、盘古大模型等&#xff0c;可以帮助程序员提高工作效率&#xff0c;加快开发速度&#xff0c;并提供更好的用户体验。 本文将介绍我在实…...

如何应对量化交易,个人股票账户如何实现量化程序化自动交易

目前股票量化交易是对个人账户开放的&#xff0c;如果你没开通&#xff0c;可能是没有找对渠道&#xff0c;很多券商的手机客户端是包含某些简易版的策略交易&#xff0c;如网格策略&#xff0c;自动止盈止损等&#xff0c;这些策略交易虽然简单、灵活性差&#xff0c;但也是量…...

milvus测试

milvus测试 目标 其实&#xff0c;我应该弄明白他的输入输出分别是什么&#xff1f; 输入是图片&#xff0c;图片经过ml模型进行特征提取&#xff0c;再在milvus中进行存储或者检索 部署 ✘ delldell-Precision-3630-Tower  /nvme/baum/git-project/milvus   master …...

antd 表格getCheckboxProps禁用

需求&#xff1a;列表某些数据复选框禁用 实现效果图&#xff1a; 实现代码&#xff1a; <a-table :pagination"false" :row-selection"{ selectedRowKeys: selectedRowKeys, onChange: onSelectChange,getCheckboxProps:getCheckboxProps }" :column…...

京东商品列表数据接口,关键词搜索京东商品数据接口

在网页抓取方面&#xff0c;可以使用 Python、Java 等编程语言编写程序&#xff0c;通过模拟 HTTP 请求&#xff0c;获取京东网站上的商品页面。在数据提取方面&#xff0c;可以使用正则表达式、XPath 等方式从 HTML 代码中提取出有用的信息。值得注意的是&#xff0c;京东网站…...

Vue使用BMapGL,及marker简单使用

1、封装加载器 export function BMapLoader(ak) {return new Promise((resolve, reject) > {if (window.BMapGL) {resolve(window.BMapGL)} else {const script document.createElement(script)script.type text/javascriptscript.src https://api.map.baidu.com/api?v…...

WuThreat身份安全云-TVD每日漏洞情报-2023-10-10

漏洞名称:Glibc ld.so本地权限提升漏洞 漏洞级别:高危 漏洞编号:CVE-2023-4911,CNNVD-202310-197 相关涉及:系统-ubuntu_22.04-glibc-*-Up to-(excluding)-2.35-0ubuntu3.4- 漏洞状态:POC 参考链接:https://tvd.wuthreat.com/#/listDetail?TVD_IDTVD-2023-24714 漏洞名称:D-L…...

BSCI认证是谁来验厂?

BSCI认证是BusinessSocialComplianceInitiative的缩写&#xff0c;中文被叫做商业社会标准认证。而BSCI则是倡议商界遵守社会责任的组织&#xff0c;同时它是一个非营利性的组织&#xff0c;宗旨是通过一套统一程序&#xff0c;同时不断完善发展政策&#xff0c;实现监控和促进…...

Java中如何在两个线程间共享数据

Java中如何在两个线程间共享数据 在Java中&#xff0c;在两个线程之间共享数据是常见的需求&#xff0c;但需要小心处理以确保线程安全性。有多种方式可以在两个线程之间共享数据&#xff0c;下面将详细介绍这些方式&#xff0c;以及它们的优缺点。 方式1&#xff1a;共享可变…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...

0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化

是不是受够了安装了oracle database之后sqlplus的简陋&#xff0c;无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话&#xff0c;配置.bahs_profile后也能解决上下翻页这些&#xff0c;但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可&#xff0c…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...

相关类相关的可视化图像总结

目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系&#xff0c;可直观判断线性相关、非线性相关或无相关关系&#xff0c;点的分布密…...

Java后端检查空条件查询

通过抛出运行异常&#xff1a;throw new RuntimeException("请输入查询条件&#xff01;");BranchWarehouseServiceImpl.java // 查询试剂交易&#xff08;入库/出库&#xff09;记录Overridepublic List<BranchWarehouseTransactions> queryForReagent(Branch…...