当前位置: 首页 > news >正文

使用大模型提效程序员工作

引言

随着人工智能技术的不断发展,大模型在软件开发中的应用越来越广泛。

这些大模型,如GPT、文心一言、讯飞星火、盘古大模型等,可以帮助程序员提高工作效率,加快开发速度,并提供更好的用户体验。

本文将介绍我在实际工作中经常使用大模型的四个场景,展示如何在程序员的工作中使用大模型来提效。

场景一:接手其他语言的项目

在软件开发中,我们经常会遇到接手其他语言编写的项目的情况。

这时,我们需要快速熟悉项目的代码和逻辑。使用大模型可以帮助我们更快地理解代码的意思。

通过输入代码片段或者整个文件,大模型可以生成对应的解释和注释,帮助我们理解代码的功能和设计思路。

这样,我们可以快速上手项目,减少学习成本,提高工作效率。

比如:你可以输入一段 Lua 脚本,询问大模型,这段脚本的意思,还可以让它详细解释每行代码的意思,让我们更快接手一个我们不熟悉编程语言写的项目。

场景二:生成脚本,辅助日志查询

在大型项目中,日志是一个非常重要的调试和排查问题的工具。

然而,手动分析和查询日志是一项繁琐且耗时的任务。使用大模型可以帮助我们生成脚本,辅助日志查询。

通过输入日志的关键词或者查询条件,大模型可以自动生成相应的脚本,帮助我们抽取日志中的需要的内容。

这样,我们可以更快地查找线上问题,定位和解决bug,提高系统的稳定性和可靠性。

场景三:根据接口文档生成 Java Bean 代码

在与其他团队或服务进行集成时,我们通常需要根据接口文档来编写对应的Java Bean代码。

手动编写这些代码是一项繁琐且容易出错的任务。使用大模型可以直接生成Java Bean代码,减少编码时间。

通过输入接口文档的关键信息,大模型可以自动生成对应的Java Bean类和方法,包括字段、注释等。

这样,我们可以节省大量的时间和精力,并且减少出错的可能性。

比如:我们需要接入其他人写的接口,他们只给了我们一个文档,文档中有表格,列举了每个字段的类型和意思,以及返回的一个示例 Json。

我们可以给大模型,输入一段 Json 数据,让它根据 Json 数据生成相应的 Java Bean 对象。

prompt:

{
“name”: “zhangsan”,
“age”: 17
}根据上面的Json,生成 Java Bean 对象

模型返回(省略其他描述信息):

甚至,我们可以,直接输入一个表格,让大模型根据这个表格,生成 Java Bean 对象。

这样,能够大大减少我们编写纯体力型代码的时间。

场景四:学习一门技术

在学习新的技术时,如 Spring WebFlux(作者写了技术专栏,有兴趣的关注:【具体链接】),我们通常会遇到一些疑惑和困惑。这时,大模型可以帮助我们解答这些疑惑并提供指导。

大模型可以用来描述和解释某个技术或概念的工作原理、用法和最佳实践。在学习过程中,我们可以通过咨询大模型来获取有关该技术的深入理解和详细解释。

举例来说,在学习 Spring WebFlux 时,我们可能会遇到如何处理并发请求、如何设计响应式应用程序、如何处理异常等问题。

通过向大模型提问,我们可以获得一种基于广泛经验和尝试的解答,并且这些解答通常被认为是有效和可靠的。

虽然,为了确保准确性和可靠性,我们仍然需要验证大模型提供的回答。但使用大模型仍然能够大大提升我们学习新技术的效率。

prompt:

webflux 怎么让一个接口执行多次,使用Mono或者Flux实现

模型返回:

结论

使用大模型可以极大地提高程序员的工作效率。

通过在接手其他语言的项目中使用大模型、生成脚本辅助日志查询、根据接口文档使用大模型直接生成Java Bean代码以及学习新技术这四个场景的实践,我们可以更快地理解代码、更快地查找线上问题,以及减少编码时间。

大模型的应用不仅可以加快开发速度,还可以提供更好的用户体验和代码质量。相信随着人工智能技术的不断进步,大模型在程序员工作中的应用将会越来越广泛,为软件开发带来更多的便利和效益。

如果你需要上面几个场景的大模型 Prompt,欢迎后台联系我!

如果您对使用大模型提效程序员工作有任何疑问或者其他想法,请随时在评论区留言,我将尽快回复。谢谢阅读!

相关文章:

使用大模型提效程序员工作

引言 随着人工智能技术的不断发展,大模型在软件开发中的应用越来越广泛。 这些大模型,如GPT、文心一言、讯飞星火、盘古大模型等,可以帮助程序员提高工作效率,加快开发速度,并提供更好的用户体验。 本文将介绍我在实…...

如何应对量化交易,个人股票账户如何实现量化程序化自动交易

目前股票量化交易是对个人账户开放的,如果你没开通,可能是没有找对渠道,很多券商的手机客户端是包含某些简易版的策略交易,如网格策略,自动止盈止损等,这些策略交易虽然简单、灵活性差,但也是量…...

milvus测试

milvus测试 目标 其实,我应该弄明白他的输入输出分别是什么? 输入是图片,图片经过ml模型进行特征提取,再在milvus中进行存储或者检索 部署 ✘ delldell-Precision-3630-Tower  /nvme/baum/git-project/milvus   master …...

antd 表格getCheckboxProps禁用

需求&#xff1a;列表某些数据复选框禁用 实现效果图&#xff1a; 实现代码&#xff1a; <a-table :pagination"false" :row-selection"{ selectedRowKeys: selectedRowKeys, onChange: onSelectChange,getCheckboxProps:getCheckboxProps }" :column…...

京东商品列表数据接口,关键词搜索京东商品数据接口

在网页抓取方面&#xff0c;可以使用 Python、Java 等编程语言编写程序&#xff0c;通过模拟 HTTP 请求&#xff0c;获取京东网站上的商品页面。在数据提取方面&#xff0c;可以使用正则表达式、XPath 等方式从 HTML 代码中提取出有用的信息。值得注意的是&#xff0c;京东网站…...

Vue使用BMapGL,及marker简单使用

1、封装加载器 export function BMapLoader(ak) {return new Promise((resolve, reject) > {if (window.BMapGL) {resolve(window.BMapGL)} else {const script document.createElement(script)script.type text/javascriptscript.src https://api.map.baidu.com/api?v…...

WuThreat身份安全云-TVD每日漏洞情报-2023-10-10

漏洞名称:Glibc ld.so本地权限提升漏洞 漏洞级别:高危 漏洞编号:CVE-2023-4911,CNNVD-202310-197 相关涉及:系统-ubuntu_22.04-glibc-*-Up to-(excluding)-2.35-0ubuntu3.4- 漏洞状态:POC 参考链接:https://tvd.wuthreat.com/#/listDetail?TVD_IDTVD-2023-24714 漏洞名称:D-L…...

BSCI认证是谁来验厂?

BSCI认证是BusinessSocialComplianceInitiative的缩写&#xff0c;中文被叫做商业社会标准认证。而BSCI则是倡议商界遵守社会责任的组织&#xff0c;同时它是一个非营利性的组织&#xff0c;宗旨是通过一套统一程序&#xff0c;同时不断完善发展政策&#xff0c;实现监控和促进…...

Java中如何在两个线程间共享数据

Java中如何在两个线程间共享数据 在Java中&#xff0c;在两个线程之间共享数据是常见的需求&#xff0c;但需要小心处理以确保线程安全性。有多种方式可以在两个线程之间共享数据&#xff0c;下面将详细介绍这些方式&#xff0c;以及它们的优缺点。 方式1&#xff1a;共享可变…...

4、在 CentOS 8 系统上安装 pgAdmin 4

pgAdmin 4 是一个开源的数据库管理工具&#xff0c;专门用于管理和操作 PostgreSQL 数据库系统。它提供了一个图形用户界面&#xff08;GUI&#xff09;&#xff0c;使用户能够轻松地连接到 PostgreSQL 数据库实例&#xff0c;执行 SQL 查询&#xff0c;管理数据库对象&#xf…...

【数字人】3、LIA | 使用隐式空间来实现视频驱动单张图数字人生成(ICLR 2022)

文章目录 一、背景二、方法2.1 latent motion representation2.2 latent code driven image animation2.3 学习方式2.4 推理 三、效果3.1 数据集3.2 训练细节3.3 评估3.4 定性效果3.5 定量效果3.6 消融实验3.7 失败示例 论文&#xff1a;Latent Image Animator: Learning to An…...

深度学习基础知识 最近邻插值法、双线性插值法、双三次插值算法

深度学习基础知识 最近邻插值法、双线性插值法、双三次插值算法 1、最近邻插值法 1、最近邻插值法 *最邻近插值&#xff1a;将每个目标像素找到距离它最近的原图像素点&#xff0c;然后将该像素的值直接赋值给目标像素 优点&#xff1a;实现简单&#xff0c;计算速度快缺点&…...

计算机竞赛 : 题目:基于深度学习的水果识别 设计 开题 技术

1 前言 Hi&#xff0c;大家好&#xff0c;这里是丹成学长&#xff0c;今天做一个 基于深度学习的水果识别demo 这是一个较为新颖的竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f9ff; 更多资料, 项目分享&#xff1a; https://gitee.com/dancheng-senior/pos…...

【2023美团后端-8】删除字符串的方案,限制不能连续删

小美定义一个字符申是“美丽串”&#xff0c;当且仅当该字符串包含”mei”连续子串。例如”meimei”、“xiaomeichan"都是美丽串&#xff0c;现在小美拿到了一个字符串&#xff0c;她准备删除一些字符&#xff0c;但不能删除两个连续字符。小美希望最终字符串变成美丽串&a…...

蓝桥等考Python组别十七级008

第一部分:选择题 1、Python L17 (15分) 运行下面程序,输出的结果是( )。 def func(x, y): return (x - y) % 2 print(func(10, 5)) 2152.5正确答案:B 2、Python L17 (15分) 运行下面程序,输...

docker安装sql-server数据库,使用navicat实现备份数据库导入

docker安装sql-server&#xff0c;使用navicat实现备份数据库导入 1、docker安装sql-server数据库2、使用navicat连接sql-server3、使用navicat导入备份数据库1、第一步&#xff1a;选择需要备份的数据源2、第二步 &#xff08;选择备份计划&#xff0c;设置还原文件位置信息&a…...

深度学习batch、batch_size、epoch、iteration以及小样本中episode、support set、query set关系

batch、batch_size、epoch、iteration关系&#xff1a; epoch&#xff1a;整个数据集 batch&#xff1a; 整个数据集分成多少小块进行训练 batch_size&#xff1a; 一次训练&#xff08;1 batch&#xff09;需要 batch_size个样本 iteration&#xff1a; 整个数据集需要用b…...

Air001 TIM1高级定时器单脉冲输出模式使用

Air001 TIM1高级定时器单脉冲输出模式使用 ✨本例程基于合宙官方提供的标准库以及Demo工程作为验证参考。&#x1f4cd;官方提供的SDK包资源&#xff1a;https://gitee.com/openLuat/luatos-soc-air001&#x1f33f;想了解STM32高级定时器单脉冲输出模式了解可以参考阅读:https…...

矿机生意难做,比特大陆停发工资

文/章鱼哥 出品/陀螺财经 沉寂了许久的比特大陆&#xff0c;因为一则延迟发薪的公告引起了圈内热议&#xff0c;熊市下&#xff0c;曾经风头无两的比特大陆&#xff0c;现金流也会扛不住吗&#xff1f; 据吴说区块链报道&#xff0c;多名比特大陆内部员工确认&#xff0c;比特大…...

计算机竞赛python区块链实现 - proof of work工作量证明共识算法

文章目录 0 前言1 区块链基础1.1 比特币内部结构1.2 实现的区块链数据结构1.3 注意点1.4 区块链的核心-工作量证明算法1.4.1 拜占庭将军问题1.4.2 解决办法1.4.3 代码实现 2 快速实现一个区块链2.1 什么是区块链2.2 一个完整的快包含什么2.3 什么是挖矿2.4 工作量证明算法&…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...