Pytorch深度学习—FashionMNIST数据集训练
文章目录
- FashionMNIST数据集
- 需求库导入、数据迭代器生成
- 设备选择
- 样例图片展示
- 日志写入
- 评估—计数器
- 模型构建
- 训练函数
- 整体代码
- 训练过程
- 日志
FashionMNIST数据集
- FashionMNIST(时尚 MNIST)是一个用于图像分类的数据集,旨在替代传统的手写数字MNIST数据集。它由 Zalando Research 创建,适用于深度学习和计算机视觉的实验。
- FashionMNIST 包含 10 个类别,分别对应不同的时尚物品。这些类别包括 T恤/上衣、裤子、套头衫、裙子、外套、凉鞋、衬衫、运动鞋、包和踝靴。
- 每个类别有 6,000 张训练图像和 1,000 张测试图像,总计 70,000 张图像。
- 每张图像的尺寸为 28x28 像素,与MNIST数据集相同。
- 数据集中的每个图像都是灰度图像,像素值在0到255之间。
需求库导入、数据迭代器生成
import os
import random
import numpy as np
import datetime
import torch
import torch.nn as nn
from torch.utils.data import DataLoaderimport torchvision
from torchvision import transformsimport argparse
from tqdm import tqdmimport matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriterdef _load_data():"""download the data, and generate the dataloader"""trans = transforms.Compose([transforms.ToTensor()])train_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=True, download=True, transform=trans)test_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=False, download=True, transform=trans)# print(len(train_dataset), len(test_dataset))train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)test_loader = DataLoader(test_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)return (train_loader, test_loader)
设备选择
def _device():device = torch.device("cuda" if torch.cuda.is_available() else "cpu")return device
样例图片展示
"""display data examples"""
def _image_label(labels):text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat','sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']return [text_labels[int(i)] for i in labels]def _show_images(imgs, rows, columns, titles=None, scale=1.5):figsize = (rows * scale, columns * 1.5)fig, axes = plt.subplots(rows, columns, figsize=figsize)axes = axes.flatten()for i, (img, ax) in enumerate(zip(imgs, axes)):ax.imshow(img)ax.axes.get_xaxis().set_visible(False)ax.axes.get_yaxis().set_visible(False)if titles:ax.set_title(titles[i])plt.show()return axesdef _show_examples():train_loader, test_loader = _load_data()for images, labels in train_loader:images = images.squeeze(1)_show_images(images, 3, 3, _image_label(labels))break
日志写入
class _logger():def __init__(self, log_dir, log_history=True):if log_history:log_dir = os.path.join(log_dir, datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S"))self.summary = SummaryWriter(log_dir)def scalar_summary(self, tag, value, step):self.summary.add_scalars(tag, value, step)def images_summary(self, tag, image_tensor, step):self.summary.add_images(tag, image_tensor, step)def figure_summary(self, tag, figure, step):self.summary.add_figure(tag, figure, step)def graph_summary(self, model):self.summary.add_graph(model)def close(self):self.summary.close()
评估—计数器
class AverageMeter():def __init__(self):self.reset()def reset(self):self.val = 0self.avg = 0self.sum = 0self.count = 0def update(self, val, n=1):self.val = valself.sum += val * nself.count += nself.avg = self.sum / self.count
模型构建
class Conv3x3(nn.Module):def __init__(self, in_channels, out_channels, down_sample=False):super(Conv3x3, self).__init__()self.conv = nn.Sequential(nn.Conv2d(in_channels, out_channels, 3, 1, 1),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True),nn.Conv2d(out_channels, out_channels, 3, 1, 1),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True))if down_sample:self.conv[3] = nn.Conv2d(out_channels, out_channels, 2, 2, 0)def forward(self, x):return self.conv(x)class SimpleNet(nn.Module):def __init__(self, in_channels, out_channels):super(SimpleNet, self).__init__()self.conv1 = Conv3x3(in_channels, 32)self.conv2 = Conv3x3(32, 64, down_sample=True)self.conv3 = Conv3x3(64, 128)self.conv4 = Conv3x3(128, 256, down_sample=True)self.fc = nn.Linear(256*7*7, out_channels)def forward(self, x):x = self.conv1(x)x = self.conv2(x)x = self.conv3(x)x = self.conv4(x)x = torch.flatten(x, 1)out = self.fc(x)return out
训练函数
def train(model, train_loader, test_loader, criterion, optimizor, epochs, device, writer, save_weight=False):train_loss = AverageMeter()test_loss = AverageMeter()train_precision = AverageMeter()test_precision = AverageMeter()time_tick = datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S")for epoch in range(epochs):print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, args.lr))model.train()for input, label in tqdm(train_loader):input, label = input.to(device), label.to(device)output = model(input)# backwardloss = criterion(output, label)optimizor.zero_grad()loss.backward()optimizor.step()# loggerpredict = torch.argmax(output, dim=1)train_pre = sum(predict == label) / len(label)train_loss.update(loss.item(), input.size(0))train_precision.update(train_pre.item(), input.size(0))model.eval()with torch.no_grad():for X, y in tqdm(test_loader):X, y = X.to(device), y.to(device)y_hat = model(X)loss_te = criterion(y_hat, y)predict_ = torch.argmax(y_hat, dim=1)test_pre = sum(predict_ == y) / len(y)test_loss.update(loss_te.item(), X.size(0))test_precision.update(test_pre.item(), X.size(0))if save_weight:best_dice = args.best_diceweight_dir = os.path.join(args.weight_dir, args.model, time_tick)os.makedirs(weight_dir, exist_ok=True)monitor_dice = test_precision.avgif monitor_dice > best_dice:best_dice = max(monitor_dice, best_dice)name = os.path.join(weight_dir, args.model + '_' + str(epoch) + \'_test_loss-' + str(round(test_loss.avg, 4)) + \'_test_dice-' + str(round(best_dice, 4)) + '.pt')torch.save(model.state_dict(), name)print("train" + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=train_loss.avg, dice=train_precision.avg))print("test " + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=test_loss.avg, dice=test_precision.avg))# summarywriter.scalar_summary("Loss/loss", {"train": train_loss.avg, "test": test_loss.avg}, epoch)writer.scalar_summary("Loss/precision", {"train": train_precision.avg, "test": test_precision.avg}, epoch)writer.close()
整体代码
import os
import random
import numpy as np
import datetime
import torch
import torch.nn as nn
from torch.utils.data import DataLoaderimport torchvision
from torchvision import transformsimport argparse
from tqdm import tqdmimport matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriter"""Reproduction experiment"""
def setup_seed(seed):random.seed(seed)np.random.seed(seed)torch.manual_seed(seed)torch.cuda.manual_seed(seed)torch.cuda.manual_seed_all(seed)# torch.backends.cudnn.benchmark = False# torch.backends.cudnn.enabled = False# torch.backends.cudnn.deterministic = True"""data related"""
def _base_options():parser = argparse.ArgumentParser(description="Train setting for FashionMNIST")# about datasetparser.add_argument('--batch_size', default=8, type=int, help='the batch size of dataset')parser.add_argument('--num_works', default=4, type=int, help="the num_works used")# trainparser.add_argument('--epochs', default=100, type=int, help='train iterations')parser.add_argument('--lr', default=0.001, type=float, help='learning rate')parser.add_argument('--model', default="SimpleNet", choices=["SimpleNet"], help="the model choosed")# log dirparser.add_argument('--log_dir', default="./logger/", help='the path of log file')#parser.add_argument('--best_dice', default=-100, type=int, help='for save weight')parser.add_argument('--weight_dir', default="./weight/", help='the dir for save weight')args = parser.parse_args()return argsdef _load_data():"""download the data, and generate the dataloader"""trans = transforms.Compose([transforms.ToTensor()])train_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=True, download=True, transform=trans)test_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=False, download=True, transform=trans)# print(len(train_dataset), len(test_dataset))train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)test_loader = DataLoader(test_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)return (train_loader, test_loader)def _device():device = torch.device("cuda" if torch.cuda.is_available() else "cpu")return device"""display data examples"""
def _image_label(labels):text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat','sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']return [text_labels[int(i)] for i in labels]def _show_images(imgs, rows, columns, titles=None, scale=1.5):figsize = (rows * scale, columns * 1.5)fig, axes = plt.subplots(rows, columns, figsize=figsize)axes = axes.flatten()for i, (img, ax) in enumerate(zip(imgs, axes)):ax.imshow(img)ax.axes.get_xaxis().set_visible(False)ax.axes.get_yaxis().set_visible(False)if titles:ax.set_title(titles[i])plt.show()return axesdef _show_examples():train_loader, test_loader = _load_data()for images, labels in train_loader:images = images.squeeze(1)_show_images(images, 3, 3, _image_label(labels))break"""log"""
class _logger():def __init__(self, log_dir, log_history=True):if log_history:log_dir = os.path.join(log_dir, datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S"))self.summary = SummaryWriter(log_dir)def scalar_summary(self, tag, value, step):self.summary.add_scalars(tag, value, step)def images_summary(self, tag, image_tensor, step):self.summary.add_images(tag, image_tensor, step)def figure_summary(self, tag, figure, step):self.summary.add_figure(tag, figure, step)def graph_summary(self, model):self.summary.add_graph(model)def close(self):self.summary.close()"""evaluate the result"""
class AverageMeter():def __init__(self):self.reset()def reset(self):self.val = 0self.avg = 0self.sum = 0self.count = 0def update(self, val, n=1):self.val = valself.sum += val * nself.count += nself.avg = self.sum / self.count"""define the Net"""
class Conv3x3(nn.Module):def __init__(self, in_channels, out_channels, down_sample=False):super(Conv3x3, self).__init__()self.conv = nn.Sequential(nn.Conv2d(in_channels, out_channels, 3, 1, 1),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True),nn.Conv2d(out_channels, out_channels, 3, 1, 1),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True))if down_sample:self.conv[3] = nn.Conv2d(out_channels, out_channels, 2, 2, 0)def forward(self, x):return self.conv(x)class SimpleNet(nn.Module):def __init__(self, in_channels, out_channels):super(SimpleNet, self).__init__()self.conv1 = Conv3x3(in_channels, 32)self.conv2 = Conv3x3(32, 64, down_sample=True)self.conv3 = Conv3x3(64, 128)self.conv4 = Conv3x3(128, 256, down_sample=True)self.fc = nn.Linear(256*7*7, out_channels)def forward(self, x):x = self.conv1(x)x = self.conv2(x)x = self.conv3(x)x = self.conv4(x)x = torch.flatten(x, 1)out = self.fc(x)return out"""progress of train/test"""
def train(model, train_loader, test_loader, criterion, optimizor, epochs, device, writer, save_weight=False):train_loss = AverageMeter()test_loss = AverageMeter()train_precision = AverageMeter()test_precision = AverageMeter()time_tick = datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S")for epoch in range(epochs):print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, args.lr))model.train()for input, label in tqdm(train_loader):input, label = input.to(device), label.to(device)output = model(input)# backwardloss = criterion(output, label)optimizor.zero_grad()loss.backward()optimizor.step()# loggerpredict = torch.argmax(output, dim=1)train_pre = sum(predict == label) / len(label)train_loss.update(loss.item(), input.size(0))train_precision.update(train_pre.item(), input.size(0))model.eval()with torch.no_grad():for X, y in tqdm(test_loader):X, y = X.to(device), y.to(device)y_hat = model(X)loss_te = criterion(y_hat, y)predict_ = torch.argmax(y_hat, dim=1)test_pre = sum(predict_ == y) / len(y)test_loss.update(loss_te.item(), X.size(0))test_precision.update(test_pre.item(), X.size(0))if save_weight:best_dice = args.best_diceweight_dir = os.path.join(args.weight_dir, args.model, time_tick)os.makedirs(weight_dir, exist_ok=True)monitor_dice = test_precision.avgif monitor_dice > best_dice:best_dice = max(monitor_dice, best_dice)name = os.path.join(weight_dir, args.model + '_' + str(epoch) + \'_test_loss-' + str(round(test_loss.avg, 4)) + \'_test_dice-' + str(round(best_dice, 4)) + '.pt')torch.save(model.state_dict(), name)print("train" + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=train_loss.avg, dice=train_precision.avg))print("test " + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=test_loss.avg, dice=test_precision.avg))# summarywriter.scalar_summary("Loss/loss", {"train": train_loss.avg, "test": test_loss.avg}, epoch)writer.scalar_summary("Loss/precision", {"train": train_precision.avg, "test": test_precision.avg}, epoch)writer.close()if __name__ == "__main__":# configargs = _base_options()device = _device()# datatrain_loader, test_loader = _load_data()# loggerwriter = _logger(log_dir=os.path.join(args.log_dir, args.model))# modelmodel = SimpleNet(in_channels=1, out_channels=10).to(device)optimizor = torch.optim.Adam(model.parameters(), lr=args.lr)criterion = nn.CrossEntropyLoss()train(model, train_loader, test_loader, criterion, optimizor, args.epochs, device, writer, save_weight=True)""" args = _base_options()_show_examples() # ———> 样例图片显示
"""
训练过程
日志
相关文章:

Pytorch深度学习—FashionMNIST数据集训练
文章目录 FashionMNIST数据集需求库导入、数据迭代器生成设备选择样例图片展示日志写入评估—计数器模型构建训练函数整体代码训练过程日志 FashionMNIST数据集 FashionMNIST(时尚 MNIST)是一个用于图像分类的数据集,旨在替代传统的手写数字…...
uniapp 返回上一步携带参数
1. 下一步 // 返回上一页setTimeout(() > {let pages getCurrentPages();let prevPage pages[pages.length - 2];prevPage.$vm.schoolName this.formList;uni.navigateBack({delta: 1});}, 1000) 2. 返回上一步, 携带参数 // 获取下一步返回的数据onShow() {let pages …...

软件工程与计算总结(七)需求文档化与验证
目录 一.文档化的原因 二.需求文档基础 1.需求文档的交流对象 2.用例文档 3.软件需求规格说明文档 三.需求文档化要点 1.技术文档协作要点 2.需求书写要点 3.软件需求规格说明文档属性要点 四.评审软件需求规格说明文档 1.需求验证与确认 2.评审需求的注意事项 五…...
MySQL锁概述
数据库锁是一种机制,用于管理并发访问数据库的方式。当多个用户或事务同时访问数据库时,可能会导致数据不一致或冲突的问题。数据库锁的作用是确保数据的一致性和完整性,同时允许多个用户并发地访问数据库。 需要注意的是,加锁是消…...

【Ceph Block Device】块设备挂载使用
文章目录 前言创建pool创建user创建image列出image检索image信息调整image大小增加image大小减少image大小 删除image从pool中删除image从pool中“延迟删除”image从pool中移除“延迟删除的image” 恢复image恢复指定pool中延迟删除的image恢复并重命名image 映射块设备格式化i…...

Arbitrum Stylus 的工作原理
理解 Arbitrum 如何协调 EVM 和 WASM 的共存是至关重要的。这不仅仅是拥有两个独立的引擎;这是一种增强两者优势的协同关系。 Arbitrum 的独特架构允许 EVM 和 WASM 之间进行无缝和同步的操作,这要归功于其统一的状态、跨 VM 调用和兼容的经济模型。 用…...

nextjs构建服务端渲染,同时使用Material UI进行项目配置
一、创建一个next项目 使用create-next-app来启动一个新的Next.js应用,它会自动为你设置好一切 运行命令: npx create-next-applatest 执行结果如下: 启动项目: pnpm dev 执行结果: 启动成功! 二、安装Mater…...
Java 使用 Easyexcel 导出大量数据
读Excel | Easy Excel 1、 我遇到的数据量超级大,使用传统的POI方式来完成导入导出很明显会内存溢出,并且效率会非常低;2、 数据量大直接使用select * from tableName肯定不行,一下子查出来300w条数据肯定会很慢;3、 …...

高效防汛决策:山海鲸可视化系统助力城市防洪
随着全球气候的变化,自然灾害如洪水、台风等频发,防范洪水成为城市管理者和居民们亟待解决的重要问题。 洪水的威胁 洪水是自然界的杀手之一,不仅会造成大量的财产损失,还可能危害人们的生命安全。因此,预测、监测和有…...

易点云CFO向征:CFO不能只讲故事,价值创造才是核心
作者 | 曾响铃 文 | 响铃说 在今年6月初,也是易点云上市6天后,《巴伦周刊》正式启动评价“2023港美上市中国企业CFO精英100”的活动。 时间来到9月,评价揭秘,易点云CFO向征成功入选,被评为“年度最具成长潜力CFO”…...

【计算机网络】poll | epoll
文章目录 1. pollpoll函数参数解析代码解析PollServer代码 poll 特点 2. epoll认识接口epoll_createepoll_ctlepoll_wait 基本原理红黑树就绪队列 1. poll poll函数参数解析 输入 man poll poll的第一个参数是文件描述符 poll的第二个参数为 等待的多个文件描述符(fd)数字层面…...

C++设计模式_07_Bridge 桥模式
文章目录 1. 动机(Motivation)2. 代码演示Bridge 桥模式2.1 基于继承的常规思维处理2.2 基于组合关系的重构优化2.3 采用Bridge 桥模式的实现 3. 模式定义4. 结构(Structure)5. 要点总结 与上篇介绍的Decorator 装饰模式一样&…...
[JAVA版本] Websocket获取B站直播弹幕——基于直播开放平台
教程 B站直播间弹幕Websocket获取 — 哔哩哔哩直播开放平台 基于B站直播开放平台开放且未上架时,只能个人使用。 代码实现 1、相关依赖 fastjson2用于解析JSON字符串,可自行替换成别的框架。 hutool-core用于解压zip数据,可自行替换成别的…...

第一个 Python 程序
三、第一个 Python 程序 好了,说了那么多,现在我们可以来写一下第一个 Python 程序了。 一开始写 Python 程序,个人不太建议用专门的工具来写,不方便熟悉语法,所以这里我先用 Sublime Text 来写,后期可以…...

广告牌安全监测,保障户外广告牌的安全与稳定
随着城市的发展和现代化,广告牌已经成为城市风景的一部分。然而,随之而来的是广告牌安全问题,因为它们暴露在各种天气和环境条件下,一旦掉落,可能对人们的生命和财产造成威胁。广告牌安全监测有效的解决了这一问题&…...

分类预测 | MATLAB实现KOA-CNN-GRU开普勒算法优化卷积门控循环单元数据分类预测
分类预测 | MATLAB实现KOA-CNN-GRU开普勒算法优化卷积门控循环单元数据分类预测 目录 分类预测 | MATLAB实现KOA-CNN-GRU开普勒算法优化卷积门控循环单元数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.MATLAB实现KOA-CNN-GRU开普勒算法优化卷积门控循环单…...

进来了解实现官网搜索引擎的三种方法
做网站的目的是对自己的品牌进行推广,让越来越多的人知道自己的产品,但是如果只是做了一个网站放着,然后等着生意找上门来那是不可能的。在当今数字时代,实现官网搜索引擎对于提升用户体验和推动整体性能至关重要。搜索引擎可以帮…...

OpenCV3-Python(7)模板匹配和霍夫检测
模板匹配 膜版匹配不能匹配尺度变换和视角变换的图像 图片中查找和模板相似度最高的图像 计算相似程度最高的位置 res cv.matchTemplate(img , template, method) 该方法返回一个类似灰度图的东西,如果用的相关匹配,那么亮的地方就是可能匹配上的地方 …...

[C++11]花括号{}、initializer_list、auto、decltype
文章目录 1.花括号{ }的扩展2.initializer_list3.auto4.decltype5.容器的增加5.1array[useless]5.2forward_list[useless]5.3unordered_map/unordered_set5.4统一增加 6.知乎文章 1.花括号{ }的扩展 int main() {//C98花括号{ }支持 1.数组 2.结构体struct Point{int _x;int _…...

在Android平板上使用code-server公网远程Ubuntu服务器编程
文章目录 1.ubuntu本地安装code-server2. 安装cpolar内网穿透3. 创建隧道映射本地端口4. 安卓平板测试访问5.固定域名公网地址6.结语 1.ubuntu本地安装code-server 准备一台虚拟机,Ubuntu或者centos都可以,这里以VMwhere ubuntu系统为例 下载code server服务,浏览器…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...

HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...