当前位置: 首页 > news >正文

OpenCV3-Python(7)模板匹配和霍夫检测

模板匹配

膜版匹配不能匹配尺度变换和视角变换的图像
图片中查找和模板相似度最高的图像
计算相似程度最高的位置
res = cv.matchTemplate(img , template, method)
该方法返回一个类似灰度图的东西,如果用的相关匹配,那么亮的地方就是可能匹配上的地方
img图像template模板
method

  • 平方差匹配CV_TM_SQDIFF 模板与图像的平方差进行匹配,最好的匹配是0,匹配越差值越大
  • 相关匹配CV_TM_CCORR 模板与图像乘法进行匹配,数值越大表示匹配程度越高
  • 相关系数匹配CV_TM_CCOEFF 模板与图像相关系数匹配,1表示完美匹配,-1表示最差匹配

cv.minMaxLoc()查找最大值/最小值位置即可
该方法返回最小值,最大值,最小值位置(数列),最大值位置(数列)

img = cv.imread....
template = cv.read...
res = cv.matchTemplate(img, template, CV_TM_CCORR)
minval,maxval,minloc,maxloc = cv.minMaxLoc(res)
top_left = maxloc  # 匹配位置方框的左上角就是maxloc返回的位置,因为使用的是相关匹配
h,w = template.shape[:2]
bottom_right = (top_left[0]+w,top_left[1]+h)
cv.rectangle(img,top_left,bottom_right,(0,255,0),2) #绘制方框 绿色线框宽度为2 

霍夫变换

用于提取直线和圆的形状

霍夫直线检测

image.png
image.png
cv.HoughLines(edges,rho,theta)
edges一般为灰度且进行过canny边缘化的灰度图像

  1. rho:以像素为单位的距离精度。
  2. double类型的theta:以弧度为单位的角度精度

返回的是一个array型数组,每一个元素都是一组rho,theta

import matplotlib.pyplot as plt
import cv2 as cv
import numpy as npimg = cv.imread("/Users/liruiyan/Downloads/IMG_9534.jpg")
plt.subplot(2, 2, 1)
plt.title("origin")
plt.axis("off")
plt.imshow(img[:, :, ::-1])gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
plt.subplot(2, 2, 2)
plt.title("convert_gray")
plt.axis("off")
plt.imshow(gray, cmap=plt.cm.gray)edges = cv.Canny(gray, 50, 150)
plt.subplot(2, 2, 3)
plt.axis("off")
plt.title("canny_edges")
plt.imshow(gray, cmap=plt.cm.gray)lines = cv.HoughLines(edges, 0.6, np.pi/180, 250)
# 返回的lines是一个关于rho,theta的一个array,每一个[rho,theta]都是霍夫空间内一个关于直线的描述
for line in lines:rho, theta = line[0]a = np.cos(theta)b = np.sin(theta)x0 = a*rhoy0 = b*rho# 计算延伸的直线起点和终点x1 = int(x0 + 10000*(-b))x2 = int(x0 - 10000*(-b))y1 = int(y0 + 10000 * a)y2 = int(y0 - 10000 * a)cv.line(img, (x1, y1), (x2, y2), (0, 255, 0), 10)plt.subplot(2, 2, 4)
plt.title("result")
plt.imshow(img[:, :, ::-1])
plt.axis("off")
plt.show()plt.imshow(img[:, :, ::-1])
plt.figure(figsize=(10, 8), dpi=200)
plt.show()

霍夫圆检测

霍夫圆对噪声比较敏感,要进行中值滤波
cv.HoughCircles(img, method ,dp, minDist, param1, param2, minRadius, maxRadius)
img:输入图像,灰度图像
method :霍夫圆检测算法:CV_HOUGH_GRADIENT
dp:霍夫空间分辨率,1表示和原图一致,2表示为原图一半
minDist:圆心之间最小距离 ,两圆心如果小于该值,视为同一个圆
param1
param2
minRadius,maxRadius:要检测的圆半径的最小值和最大值

相关文章:

OpenCV3-Python(7)模板匹配和霍夫检测

模板匹配 膜版匹配不能匹配尺度变换和视角变换的图像 图片中查找和模板相似度最高的图像 计算相似程度最高的位置 res cv.matchTemplate(img , template, method) 该方法返回一个类似灰度图的东西,如果用的相关匹配,那么亮的地方就是可能匹配上的地方 …...

[C++11]花括号{}、initializer_list、auto、decltype

文章目录 1.花括号{ }的扩展2.initializer_list3.auto4.decltype5.容器的增加5.1array[useless]5.2forward_list[useless]5.3unordered_map/unordered_set5.4统一增加 6.知乎文章 1.花括号{ }的扩展 int main() {//C98花括号{ }支持 1.数组 2.结构体struct Point{int _x;int _…...

在Android平板上使用code-server公网远程Ubuntu服务器编程

文章目录 1.ubuntu本地安装code-server2. 安装cpolar内网穿透3. 创建隧道映射本地端口4. 安卓平板测试访问5.固定域名公网地址6.结语 1.ubuntu本地安装code-server 准备一台虚拟机,Ubuntu或者centos都可以,这里以VMwhere ubuntu系统为例 下载code server服务,浏览器…...

宝塔上安装mysql版本比较和区别

在宝塔上安装MySQL时,几个主要版本之间的区别主要在于性能、功能和安全性。 MySQL Community Server(社区版本):这是MySQL的开源免费版本,由社区支持,但不提供官方技术支持。这个版本对一般用户来说可能有…...

uniapp微信小程序自定义封装分段器。

uniapp微信小程序自定义封装分段器。 话不多说先上效果 这里我用的是cil框架 vue3 下面贴代码 组价代码&#xff1a; <template><view class"page"><viewv-for"(item, index) in navList":key"index"click"changeNav(ind…...

文心一言 VS 讯飞星火 VS chatgpt (111)-- 算法导论10.2 2题

二、用go语言&#xff0c;用一个单链表 L实现一个栈。要求操作 PUSH和 POP 的运行时间仍为 O(1)。 文心一言&#xff1a; 在 Go 语言中&#xff0c;我们可以用结构体来实现一个单链表&#xff0c;然后再用栈的相关操作。 以下是一个可能的实现方式&#xff1a; package mai…...

小程序中使用echarts的相关配置以及折线图案例(简单易懂)

第一步&#xff1a;引入echarts文件--此文件需要下载&#xff1a; 下载地址&#xff1a;点击此处进行下载echarts文件 点击Download ZIP下载压缩包&#xff0c;注意&#xff1a;e-canvas是我从完整的文件中剥离出来的有用的&#xff0c;不会影响项目。 第二步&#xff1a;把整…...

前端面试回答不好的问题总结

vue生命周期&#xff1a; beforeCreated、created、beforeMount、mount、beforeUptade、uptade、beforeDestroy、destroyed、 Activated、Deactivated 闭包&#xff1a; ECMAScript中&#xff0c;闭包指的是&#xff1a; 从理论角度&#xff1a;所有的函数。因为它们都在创…...

漏洞预警|CVE-2023-38545 Curl 和 libcurl 堆缓冲区溢出漏洞

项目介绍 libcurl是一个跨平台的网络协议库&#xff0c;支持http、https、ftp等多种协议。 项目地址 https://github.com/curl/curl/releases 影响版本 7.69.0-8.3.0 漏洞分析 漏洞成因在于使用SOCKS5代理过程中造成的溢出。当Curl程序使用 SOCKS5代理时&#xff0c;设置…...

【Java 进阶篇】HTML 语义化标签详解

HTML&#xff08;HyperText Markup Language&#xff09;是构建Web页面的标准语言。在HTML中&#xff0c;标签&#xff08;tag&#xff09;是用于定义页面结构和内容的关键元素。在构建网页时&#xff0c;了解如何正确使用HTML标签是非常重要的&#xff0c;因为它们不仅影响页面…...

【思维构造】Element Extermination—CF1375C

Element Extermination—CF1375C 参考文章 思路 若 a 1 < a n a_1<a_n a1​<an​&#xff0c; 初始时 a 2 , . . . , a n − 1 a_2, ..., a_{n-1} a2​,...,an−1​ 这 n − 2 n-2 n−2 个元素中大于 a 1 a_1 a1​ 中的元素都能通过 a 1 a_1 a1​ 而被删除&…...

CSP模拟53联测15 D. 子序列

CSP模拟53联测15 D. 子序列 文章目录 CSP模拟53联测15 D. 子序列题目大意思路code 题目大意 &#xff08;seq / 3s / 512 MiB&#xff09; 给定一个长为 n n n 的仅有小写英文字母构成字符串 S S 1 S 2 ⋯ S n SS_1S_2\cdots S_n SS1​S2​⋯Sn​。我们定义一个字符串是好…...

iceberg-flink 十一:在dlink代码中建表增加catalog地址。

一&#xff1a;catalog 是存储元数据的地方。 二&#xff1a;表中增加catalog地址’ 当我们映射iceberg表的时候&#xff0c;增加了地址&#xff0c;就会成功映射到表 CREATE CATALOG dk_empower WITH(typeiceberg,catalog-typehadoop,warehousehdfs://cluster/iceberg/war…...

多列等高实现

预期效果 多列等高,左右两列高度自适应且一样,分别设置不同背景色效果预览: 分别由6种方法实现 1、使用padding + margin + overflow 实现多列等高效果,具有良好的兼容性; 2、border实现多列等高,左边框宽度为200px,左列浮动,伪元素清除浮动; 3、父元素线性渐变背景色…...

2023 泰山杯 --- Crypto wp

文章目录 题目解题过程part1part2part3 解题代码 题目 from fastecdsa.curve import P521 as Curve from fastecdsa.point import Point from os import urandom from random import getrandbits import uuid from Crypto.PublicKey import DSA from Crypto.Util.number impor…...

蓝桥杯每日一题20233.10.10

题目描述 回文日期 - 蓝桥云课 (lanqiao.cn) 题目分析 对于此题&#xff0c;我们最先想到的是暴力解法&#xff0c;将每一种情况经行循环查找&#xff0c;在查找的过程中记录下答案&#xff0c;回文日期就是字符串判断回文&#xff0c;ABABBABA型回文日期可以将回文经行特判…...

366. 寻找⼆叉树的叶⼦节点

366. 寻找⼆叉树的叶⼦节点 这道题混用二叉树递归 「遍历」和「分解问题」 两种思维模式。 class FindLeaves:"""366. 寻找⼆叉树的叶⼦节点https://leetcode.cn/problems/find-leaves-of-binary-tree/"""def solution(self, root):self.res …...

python - excel 设置样式

文章目录 前言python - excel 设置样式1. 准备2. 示例2.1. 给单元格设置样式"等线"、大小为24磅、斜体、红色颜色和粗体2.2. 给第二行设置样式"宋体"、大小为16磅、斜体、红色颜色和粗体2.3. 给第三行数据设置垂直居中和水平居中2.4. 给第四行设置行高为30…...

Gemmini测试test文件chisel源码详解(一)

DMACommandTrackerTest.scala 源码如下&#xff1a; package gemminiimport scala.collection.mutable.ArrayBufferimport chisel3._ import chisel3.iotesters.{ChiselFlatSpec, PeekPokeTester}class DMACommandTrackerTester(c: DMAReadCommandTracker[UInt]) extends Pee…...

RabbitMQ中的手动应答和自动应答

当使用RabbitMQ来处理消息时&#xff0c;消息确认是一个重要的概念。RabbitMQ提供了两种不同的消息确认方式&#xff1a;自动应答&#xff08;Automatic Acknowledgment&#xff09;和手动应答&#xff08;Manual Acknowledgment&#xff09;。这两种方式适用于不同的应用场景&…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...