【阿旭机器学习实战】【36】糖尿病预测---决策树建模及其可视化
【阿旭机器学习实战】系列文章主要介绍机器学习的各种算法模型及其实战案例,欢迎点赞,关注共同学习交流。
【阿旭机器学习实战】【36】糖尿病预测—决策树建模及其可视化
目录
- 【阿旭机器学习实战】【36】糖尿病预测---决策树建模及其可视化
- 1. 导入数据并查看数据
- 2. 训练决策树模型及其可视化
- 2.1 决策树模型
- 2.2 可视化训练好的决策树模型
- 2.2 使用随机森林模型
1. 导入数据并查看数据
关注GZH:阿旭算法与机器学习,回复:“ML36”即可获取本文数据集、源码与项目文档
# 导入数据包
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics
import matplotlib.pyplot as plt
import matplotlib as matplot
import seaborn as sns
%matplotlib inline
col_names = ['pregnant', 'glucose', 'bp', 'skin', 'insulin', 'bmi', 'pedigree', 'age', 'label']
df = pd.read_csv("pima-indians-diabetes.csv", header=None, names=col_names)
df.head()
| pregnant | glucose | bp | skin | insulin | bmi | pedigree | age | label | |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 6 | 148 | 72 | 35 | 0 | 33.6 | 0.627 | 50 | 1 |
| 1 | 1 | 85 | 66 | 29 | 0 | 26.6 | 0.351 | 31 | 0 |
| 2 | 8 | 183 | 64 | 0 | 0 | 23.3 | 0.672 | 32 | 1 |
| 3 | 1 | 89 | 66 | 23 | 94 | 28.1 | 0.167 | 21 | 0 |
| 4 | 0 | 137 | 40 | 35 | 168 | 43.1 | 2.288 | 33 | 1 |
# 相关性矩阵
corr = df.iloc[:,:-1].corr()
#corr = (corr)
sns.heatmap(corr, xticklabels=corr.columns.values,yticklabels=corr.columns.values)corr
| pregnant | glucose | bp | skin | insulin | bmi | pedigree | age | |
|---|---|---|---|---|---|---|---|---|
| pregnant | 1.000000 | 0.129459 | 0.141282 | -0.081672 | -0.073535 | 0.017683 | -0.033523 | 0.544341 |
| glucose | 0.129459 | 1.000000 | 0.152590 | 0.057328 | 0.331357 | 0.221071 | 0.137337 | 0.263514 |
| bp | 0.141282 | 0.152590 | 1.000000 | 0.207371 | 0.088933 | 0.281805 | 0.041265 | 0.239528 |
| skin | -0.081672 | 0.057328 | 0.207371 | 1.000000 | 0.436783 | 0.392573 | 0.183928 | -0.113970 |
| insulin | -0.073535 | 0.331357 | 0.088933 | 0.436783 | 1.000000 | 0.197859 | 0.185071 | -0.042163 |
| bmi | 0.017683 | 0.221071 | 0.281805 | 0.392573 | 0.197859 | 1.000000 | 0.140647 | 0.036242 |
| pedigree | -0.033523 | 0.137337 | 0.041265 | 0.183928 | 0.185071 | 0.140647 | 1.000000 | 0.033561 |
| age | 0.544341 | 0.263514 | 0.239528 | -0.113970 | -0.042163 | 0.036242 | 0.033561 | 1.000000 |

2. 训练决策树模型及其可视化
# 选择预测所需的特征
feature_cols = ['pregnant', 'insulin', 'bmi', 'age','glucose','bp','pedigree']
X = pima[feature_cols] # 特征
y = pima.label # 类别标签
# 将数据分为训练和测试数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) # 70% training and 30% test
2.1 决策树模型
# 创建决策树分类器
clf = DecisionTreeClassifier(criterion='entropy')# 训练模型
clf = clf.fit(X_train,y_train)# 使用训练好的模型做预测
y_pred = clf.predict(X_test)
# 模型的准确性
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
Accuracy: 0.7489177489177489
2.2 可视化训练好的决策树模型
注意: 需要使用如下命令安装额外两个包用于画决策树的图
conda install python-graphviz
conda install pydotplus
from sklearn.tree import export_graphviz
from six import StringIO
from IPython.display import Image
import pydotplus
from sklearn import treedot_data = StringIO()
export_graphviz(clf, out_file=dot_data, filled=True, rounded=True,special_characters=True,feature_names = feature_cols,class_names=['0','1'])
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
graph.write_png('diabetes.png')
Image(graph.create_png())

# 创建新的决策树, 限定树的最大深度, 减少过拟合
clf = tree.DecisionTreeClassifier(criterion='entropy',max_depth=4, # 定义树的深度, 可以用来防止过拟合min_weight_fraction_leaf=0.01 # 定义叶子节点最少需要包含多少个样本(使用百分比表达), 防止过拟合)# 训练模型
clf.fit(X_train,y_train)# 预测
y_pred = clf.predict(X_test)# 模型的性能
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
Accuracy: 0.7705627705627706
from six import StringIO
from IPython.display import Image
from sklearn.tree import export_graphviz
import pydotplus
dot_data = StringIO()
export_graphviz(clf, out_file=dot_data, filled=True, rounded=True,special_characters=True, feature_names = feature_cols,class_names=['0','1'])
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
graph.write_png('diabetes2.png')
Image(graph.create_png())

2.2 使用随机森林模型
from sklearn.ensemble import RandomForestClassifier# 随机森林, 通过调整参数来获取更好的结果
rf = RandomForestClassifier(criterion='entropy',n_estimators=1, max_depth=5, # 定义树的深度, 可以用来防止过拟合min_samples_split=10, # 定义至少多少个样本的情况下才继续分叉#min_weight_fraction_leaf=0.02 # 定义叶子节点最少需要包含多少个样本(使用百分比表达), 防止过拟合)# 训练模型
rf.fit(X_train, y_train)# 做预测
y_pred = rf.predict(X_test)# 模型的准确率
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
Accuracy: 0.7402597402597403
如果文章对你有帮助,感谢点赞+关注!
关注下方GZH:阿旭算法与机器学习,回复:“ML36”即可获取本文数据集、源码与项目文档,欢迎共同学习交流
相关文章:
【阿旭机器学习实战】【36】糖尿病预测---决策树建模及其可视化
【阿旭机器学习实战】系列文章主要介绍机器学习的各种算法模型及其实战案例,欢迎点赞,关注共同学习交流。 【阿旭机器学习实战】【36】糖尿病预测—决策树建模及其可视化 目录【阿旭机器学习实战】【36】糖尿病预测---决策树建模及其可视化1. 导入数据并…...
简易黑客初级教程:黑客技术,分享教学
第一节,伸展运动。这节操我们要准备道具,俗话说:“工欲善其事,必先利其器”(是这样吗?哎!文化低……)说得有道理,我们要学习黑客技术,一点必要的工具必不可少。 1,一台属于自己的可以上网的电…...
日本公派访问学者的具体申请流程
公派日本访问学者的具体申请流程,知识人网整理了相关的资料以供大家参考。第一、申请材料一般申请CSC日本访问学者,截止日是每年的1月15号左右,但是学院在1月10号之前就审查材料了。材料包括:CSC网页的报名表,教授邀请…...
投票点赞链接制作投票链接在线制作投票图文链接制作点赞
用户在使用微信投票的时候,需要功能齐全,又快捷方便的投票小程序。而“活动星投票”这款软件使用非常的方便,用户可以随时使用手机微信小程序获得线上投票服务,很多用户都很喜欢“活动星投票”这款软件。“活动星投票”小程序在使…...
PHY设备驱动
1. 概述 MAC控制器的驱动使用的是platform总线的连接方式,PHY设备驱动是基于device、driver、bus的连接方式。 其驱动涉及如下几个重要部分: 总线 - sturct mii_bus (mii stand for media independent interface) 设备 - struct phy_device 驱动 - struc…...
Linux——UDP协议与相关套接字编程
一.概念在网络通信中,传输层中最常用的通信协议有两个:TCP协议与UDP协议。这两种协议虽然都可以用于网络通信,但是通信方式不同决定了应用场景的不同。与TCP协议相比,UDP协议最具特色的不同点有两个:无连接与面向数据报…...
EM算法 简明理解
E:Expection,期望步,利用估计的参数,来确定未知因变量的概率,并利用其来计算期望值。 M:Maximization,最大化,使用最大似然法更新参数值,使E步中期望值出现的概率最大。…...
论坛项目小程序和h5登录
项目中安装uview出现npm安装uview 直接报错:创建一个package.json配置文件在进行安装。cmd到项目。初始化一个package.json文件(vue项目的配置文件) npm init --yes 安装uview项目点击关注进入管页面,需要验证用户是否登录查用户是…...
kubernetes集群pod中的pause容器作用
kubernetes集群pod中的pause容器作用 我们搭建完集群了以后,可以使用最简单的方式创建一个pod,随意你建立什么pod,去访问相应node上执行docker ps 就会看到有一种pause容器,但是你可能从来没有启用 etrics-scraper_dashboard-me…...
【2.24】malloc()分配内存、MySQL事务、项目、动态规划
malloc是如何分配内存的? 在 Linux 操作系统中,虚拟地址空间的内部又被分为内核空间和用户空间两部分,不同位数的系统,地址空间的范围也不同。比如最常见的 32 位和 64 位系统,如下所示: 内核空间与用户空…...
Unity——使用铰链关节制作悬挂物体效果
目的在场景中创建一个悬挂的物体,是把多个模型悬挂在一起可以自由摇摆,类似链条的效果效果图前言什么是铰链关节?铰链关节 将两个刚体(Rigid body)组会在一起,从而将其约束为如同通过铰链连接一样进行移动。…...
plsql过程语言之uxdb与oracle语法差异
序号场景uxdboracle1在存储过程中使用goto子句create or replace procedure uxdbc_oracle_extension_plsql_goto_0001_procedure01(t1 int) language plsql as $$ begin if t1%20 then goto even_number; else goto odd_number; end if; <<even_number>> raise…...
file_get_contents 打开本地文件报错: failed to open stream: No such file or directory
php 使用file_get_contents时报错 failed to open stream: No such file or directory (打开流失败,没有这样的文件或目录) 1. 首先确保文件路径没问题 最好是直接复制一下文件的路径 2. windows电脑可以右键该文件 → 属性→安全 →对象名称 选中后复制一下 3. 然后…...
Candence allegro 创建等长的方法
随着源同步时序电路的发展,越来越多的并行总线开始采用这种时序控制电路,最典型的代表当属目前炙手可热的DDRx系列。下图这种点到点结构的同步信号,对于攻城狮来说,设置等长约束就非常easy了图片。 But,对于有4、6、8、、、等多颗DDR芯片的ACC同步信号来说,要设置等长约束…...
使用Python批量修改文件名称
下载了一些图片,想要更改其文件的名称。 试了许多方法,都不太理想。 于是想到了使用Python来实现。 需要用到的模块及函数: import osrename() 函数用于改变文件或文件夹的名称。它接受两个参数:原文件名和新文件名。 os.rena…...
【跟我一起读《视觉惯性SLAM理论与源码解析》】第八章 ORB-SLAM2中的特征匹配
特征匹配在ORB-SLAM2中是很重要的内容,函数有多次重载,一般而言分为以下 单目初始化下的特征匹配通过词袋进行特征匹配通过地图点投影进行特征匹配通过Sim(3)变化进行特征匹配 在单目初始化下的特征匹配是参考帧和当前帧之间的特…...
【Leedcode】数据结构中链表必备的面试题(第四期)
【Leedcode】数据结构中链表必备的面试题(第四期) 文章目录【Leedcode】数据结构中链表必备的面试题(第四期)1.题目2.思路图解(1)思路一(2)思路二3.源代码总结1.题目 相交链表: 如下(示例)&…...
【2023】助力Android金三银四面试
前言 新气象,新生机。在2023年的Android开发行业中,又有那些新的面试题出现呢?对于Android面试官的拷问,我们又如何正确去解答?万变不离其宗,其实只要Android的技术层面没变化,面试题也就是差不…...
Leetcode.1801 积压订单中的订单总数
题目链接 Leetcode.1801 积压订单中的订单总数 Rating : 1711 题目描述 给你一个二维整数数组 orders,其中每个 orders[i] [pricei, amounti, orderTypei]表示有 amounti笔类型为 orderTypei、价格为 pricei的订单。 订单类型 orderTypei 可以分为两种…...
红帽Linux技术-cp命令
cp是一个复制文件或者目录的命令,其作用是将一个或多个文件或目录从源位置复制到目标位置。 格式:cp [选项] 源文件或目录 目标文件或目录 常用选项: -r:复制目录及其子目录下的所有文件和目录; -p:保留…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章 摘要: 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言,受限于 C 语言本身的内存安全和并发安全问题,开发复杂模块极易引入难以…...
Linux基础开发工具——vim工具
文章目录 vim工具什么是vimvim的多模式和使用vim的基础模式vim的三种基础模式三种模式的初步了解 常用模式的详细讲解插入模式命令模式模式转化光标的移动文本的编辑 底行模式替换模式视图模式总结 使用vim的小技巧vim的配置(了解) vim工具 本文章仍然是继续讲解Linux系统下的…...
高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。
2024 年,高端封装市场规模为 80 亿美元,预计到 2030 年将超过 280 亿美元,2024-2030 年复合年增长率为 23%。 细分到各个终端市场,最大的高端性能封装市场是“电信和基础设施”,2024 年该市场创造了超过 67% 的收入。…...
